Скалярно-векторный потенциал и проблема электромагнитной массы

Материал из Большой Форум

Перейти к: навигация, поиск
Ф.Ф. Менде
Дата рождения:

02.07.1939 г.

Гражданство:

Флаг СССРФлаг Украины

Учёная степень:

доктор технических наук

Сайт:

http://fmnauka.narod.ru/ http://bolshoyforum.org/forum/index.php?board=50.0

Содержание

Введение

В соответствии с современной концепцией электромагнетизма движущийся заряд, вместе с которым движутся его электрические поля, создаёт вокруг себя магнитное поле. Поток электрической мощности определяется при этом вектором Пойнтинга

Файл:Svekpot001.gif

Такое поле обладает также импульсом, плотность которого определяется соотношением [1]

Файл:Svekpot002.gif

(1.1)

Следует отметить, что для написания этого соотношения нет каких-то глубоких физических обоснований, а оно получено эвристическим путём, опираясь на эксперименты, которые указывают на то, что электромагнитные волны оказывают давление на те предметы, на которые они падают. В работе [1] показано, что интегрирование соотношения (1) даёт возможность получить полный импульс электрического поля движущегося заряда

Файл:Svekpot003.gif

(1.2)

где Файл:Преобр Менде046.gif, Файл:Скалвек пот и сил вз041.gif, Файл:Новвый способ033.gif - заряд электрона, его скорость и радиус соответственно.

Из соотношения (1.2) следует, что электромагнитная масса электрона Файл:Лучантиграв002.gif, обусловленная наличием движущихся электрических полей, определяется равенством

Файл:Svekpot004.gif.

(1.3)

Недостаток такого рассмотрения заключается в том, что при движении электрона его энергетические свойства и эффективная масса зависят не только от свойств самого электрона, но и от окружающих его цепей. Приведём простой пример.

Рассмотрим двухпроводную длинную линию, состоящую из двух сверхпроводящих плоскостей (рис.1)

Файл:Electrich147.gif

Рис. 1 Двухпроводная линия, состоящая из двух параллельных сверхпроводящих плоскостей

Если по проводникам такой линии течёт постоянный ток, то магнитное поле на внутренних поверхностях плоскостей, равное удельному току, можно определить из соотношения: Файл: Эффективная масса электрона001.gif

(1.4)

где Файл:Svekpot009.gif - глубина проникновения магнитного поля в сверхпроводник; Файл:Преобр Менде046.gif, Файл:Скалвек пот и сил вз117.gif - заряд и масса электрона, Файл:Эффективная масса электрона013.gif - плотность электронов. Если подставить значение глубины проникновения в соотношение (1.4), то получим неожиданный результат:

Файл:Svekpot012.gif

Оказывается, что величина магнитного поля вовсе не зависит от величины зарядов носителей тока, а зависит от их массы.

Таким образом, удельная энергия магнитных полей

Файл:Svekpot015.gif

(1.5)

в данном случае равна удельной кинетической энергия движения зарядов. Но магнитное поле, связанное с движением носителей тока в поверхностном слое сверхпроводника, существует не только на его поверхности и в скин-слое. Объём, занимаемый магнитными полями, несоизмеримо больший, чем объём скин-слоя. Если обозначить длину линии, изображённой на рис. 1, как Файл: Эффективная масса электрона005.gif, то объём скин-слоя в сверхпроводящих плоскостях линии составит Файл: Эффективная масса электрона008.gif. Энергию магнитных полей в этом объёме определяем из соотношения:

Файл: Эффективная масса электрона009.gif

Энергия же магнитных полей, накопленная между плоскостями линии и связанная с движением зарядов в скин-слое, составит:

Файл:Svekpot016.gif

(1.6)

Если учесть, что глубина проникновения магнитного поля в сверхпроводниках составляет несколько сотен ангстрем, то при макроскопических размерах линии можно считать, что полную энергию магнитных полей в ней определяет соотношение (1.6).

Поэтому, образование магнитных полей Файл: Скалвек пот и сил вз116.gif между плоскостями линии, которые возникают в связи с движением зарядов в скин-слое, требует таких же затрат энергии, как если бы весь объём линии был заполнен частицами, движущимися со скоростью Файл: Скалвек пот и сил вз041.gif, плотность которых и масса составляют соответственно Файл:Эффективная масса электрона013.gif и Файл:Скалвек пот и сил вз117.gif.

Очевидно, что эффективная масса электрона по сравнению с массой свободного электрона возрастает при этом в Файл:Эффективная масса электрона015.gif раз. Это является следствием того, что механическое движение электронов приводит не только к накоплению их кинетической энергии в скин-слое, но, ввиду зависимости их скалярного потенциала от скорости, в линии происходит также накопление потенциальной энергии, градиент которой даёт силу, действующую на проводящие плоскости линии. Таким образом, становится понятной природа таких параметров как индуктивность и эффективная масса электрона, которые в данном случае зависят, в основном, не от массы свободных электронов, а от конфигурации проводников, по которым эти электроны двигаются.

Динамические потенциалы и поля движущихся зарядов

В современной классической электродинамике отсутствуют соотношения, дающие возможность записать электрические и магнитные поля при переходе из одной инерциальной системы в другую. Такие преобразования получают, используя ковариантные преобразования Лоренца. Возникает вопрос, можно ли в классической электродинамике в рамках преобразований Галилея получить такие преобразования. Указанные преобразования можно получить, если записать законы индукции, используя полные производные полей. Такой подход физически понятен, т.к. производные полей по времени можно получить не только за счёт частных производных по этому параметру, но и за счёт движения в пространственно меняющихся полях.

Как показано в работах [2-6] законы индукции, записанные в полных производных имеют симметричный вид:

Файл: Преобр Менде027.gif

(2.1)

или

Файл: Преобр Менде028.gif

(2.2)

Для постоянных полей эти соотношения имеют вид:

Файл: Скалвек пот и сил вз003.gif

(2.3)

В соотношениях (2.1-2.3), предполагающих справедливость преобразований Галилея, штрихованные и не штрихованные величины представляют поля и элементы в движущейся и неподвижной ИСО соответственно. Следует заметить, что преобразования (2.3) ранее можно было получить только из преобразований Лоренца.

Соотношения (2.1–2.3), представляющие законы индукции, не дают информации о том, каким образом возникли поля в исходной неподвижной ИСО. Они описывают только закономерности распространения и преобразования полей в случае движения по отношению к уже существующим полям.

Соотношения (2.3) свидетельствуют о том, что в случае относительного движения систем отсчета, между полями Файл: Преобр Менде002.gif и Файл: Преобр Менде026.gif существует перекрестная связь, т.е. движение в полях Файл: Преобр Менде026.gif приводит к появлению полей Файл: Преобр Менде002.gif и наоборот. Из этих соотношений вытекают дополнительные следствия, которые впервые были рассмотрены в работе [2]. Электрическое поле Файл: Скалвек пот и сил вз006.gif за пределами заряженного длинного стержня, на единицу длины которого приходится заряд Файл:Преобр Менде030.gif, убывает по закону Файл:Преобр Менде031.gif, где Файл:Преобр Менде032.gif - расстояние от центральной оси стержня до точки наблюдения. Если параллельно оси стержня в поле Файл:Преобр Менде040.gif начать двигать со скоростью Файл:Svekpot020.gif другую ИСО, то в ней появится дополнительное магнитное поле Файл:Svekpot033.gif. Если теперь по отношению к уже движущейся ИСО начать двигать третью систему отсчета со скоростью Файл:Svekpot020.gif, то уже за счет движения в поле Файл:Svekpot034.gif появится добавка к электрическому полю Файл:Svekpot035.gif. Данный процесс можно продолжать и далее, в результате чего может быть получен ряд, дающий величину электрического поля Файл: Преобр Менде041.gif в движущейся ИСО при достижении скорости Файл:Svekpot036.gif, когда Файл:Svekpot038.gif, а Файл:Преобр Менде044.gif. В конечном итоге в движущейся ИСО величина динамического электрического поля окажется больше, чем в исходной и определиться соотношением:

Файл: Скалвек пот и сил вз019.gif

Если речь идет об электрическом поле одиночного заряда Файл: Преобр Менде046.gif, то его электрическое поле будет определяться соотношением:

Файл:Zagmagnpolya023.gif

где Файл:Преобр Менде048.gif - нормальная составляющая скорости заряда к вектору, соединяющему движущийся заряд и точку наблюдения.

Выражение для скалярного потенциала, создаваемого движущимся зарядом, для этого случая запишется следующим образом [2-6]:

Файл:Zagmagnpolya025.gif

(2.4)

где Файл:Преобр Менде050.gif- скалярный потенциал неподвижного заряда.

Потенциал Файл:Скалвек пот и сил вз025.gif может быть назван скалярно-векторным, т.к. он зависит не только от абсолютной величины заряда, но и от скорости и направления его движения по отношению к точке наблюдения. Максимальное значение этот потенциал имеет в направлении нормальном к движению самого заряда. Более того, если скорость заряда меняется, что связано с его ускорением, то могут быть вычислены и электрические поля, индуцируемые ускоряемым зарядом.

Электромагнитная масса полей движущихся зарядов в концепции скалярно-векторного потенциала

Принято считать, что кинетическая энергия электронов и других заряженных частиц определяется той разностью потенциалов Файл:Законы самоинд002.gif, при помощи которой эти частицы были ускорены.

Файл:Svekpot039.gif

Но в случае электронного пучка всегда имеется замкнутая цепь, по которой электроны возвращаются обратно к источнику питания. С другой стороны, вокруг электронного потока всегда имеется радиальное электрическое поле, которое исчезает при попадании пучка в мишень. Это поле тоже имеет энергию, которая должна выделяться в таком процессе. Поэтому возникает два вопроса. Влияют ли внешние цепи, как в случае со сверхпроводящей линией, на эффективную массу электронов и имеют ли какое-то отношение электрические поля, окружающие электронный поток, к наблюдаемой массе электронов.

Рассмотрим проводящую трубу, имеющую заглушку с одной стороны, по оси которой движется электронный поток (рис. 2). Электронный поток ускоряется разностью потенциалов между катодом и анодом. Внутри трубы поток движется с постоянной скоростью.

Файл:Svekpot048.gif

Рис. 2. Электронный поток внутри пустотелого анода.

Если на единицу длины электронного потока, движущегося внутри пустотелого анода, приходится заряд Файл:Преобр Менде030.gif, то скалярный потенциал пучка, с учётом его зависимости от скорости, запишется

Файл:Svekpot049.gif

где Файл:Скалвек пот и сил вз041.gif - скорость зарядов в пучке.

Учитывая только два первых члена разложения гиперболического косинуса в ряд, находим электрическое поле пучка:

Файл:Svekpot005.gif

(3.1)

Учитывая, что удельная энергия электрического поля определяется соотношением

Файл:Svekpot051.gif

(3.2)

можно найти энергию электрических полей, приходящуюся на единицу длины электронного пучка. В цилиндрической системе координат элемент объёма единичной длины составляет

Файл:Svekpot052.gif

(3.3)

Учитывая (3.1 – 3.3), находим энергию электрического поля, приходящуюся на элемент объёма Файл:Svekpot053.gif

Файл:Svekpot054.gif

(3.4)

Для нахождения энергии пучка, приходящуюся на единицу его длины, проинтегрируем (3.4) по радиусу и углу, пренебрегая членом Файл:Svekpot055.gif:

Файл:Svekpot056.gif

(3.5)

В этом соотношении Файл:Paradoksfar083.gif - радиус электронного пучка, а Файл:Paradoksfar084.gif - внутренний радиус трубы. Видно, что энергия, хотя и слабо, зависит от отношения радиусов. Поэтому с практической точки зрения для получения максимальной энергии пучка следует брать это отношение максимальным.

Из соотношения (3.5) видно, что энергия электрического поля электронного пучка состоит из двух частей. Первая из них характеризует поле неподвижного потока и от скорости не зависит

Файл:Svekpot057.gif

Вторая часть, как и кинетическая энергия, имеет квадратичную зависимость от скорости

Файл:Svekpot060.gif

Она и даёт кинетическую энергию заряда, которая может быть охарактеризована электромагнитной массой, связанной с наличием радиальных электрических полей заряда, зависящих от скорости:

Файл:Svekpot061.gif

Откуда получаем:

Файл:Svekpot062.gif

(3.6)

В данном соотношении Файл:Svekpot063.gif это величина электрической массы, приходящаяся на единицу длины Файл: Oshibochnost021.gif, а Файл:Преобр Менде030.gif - величина заряда, приходящегося на ту же длину. Введя обозначения Файл:Svekpot064.gif и Файл:Svekpot066.gif, где Файл:Лучантиграв002.gif и Файл:Svekpot007.gif - масса и заряд единицы длины, перепишем соотношение (3.6):

Файл:Svekpot068.gif

Сравнивая (3.6) и (1.3) легко видеть, что структура этих соотношений одинакова и электрические поля электрического пучка имеют массу электрического происхождения. Однако получили мы это соотношение, не вводя ни вектора Пойнтинга, ни магнитного поля, а воспользовавшись концепцией зависимости скалярного потенциала заряда от его относительной скорости.

Список литературы

  • 1. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике, том 6 Электродинамика, М: Мир, 1977.
  • 2. Менде Ф. Ф. К вопросу о возникновении вторичных электрических полей при протекании через сверхпроводники постоянных токов. - Харьков, 1992.- 28 с. Рукопись депонирована в ВИНИТИ 05.11.92, № 3182-В92. Деп.
  • 3. Менде Ф. Ф. Существуют ли ошибки в современной физике. Харьков, Константа, 2003.- 72 с.
  • 4. Менде Ф. Ф. Непротиворечивая электродинамика. Харьков, НТМТ, 2008, – 153 с. ISBN 978-966-8603-23-5
  • 5. Mende F. F. On refinement of certain laws of classical electrodynamics, arXiv, physics/0402084.
  • 6. Менде Ф. Ф. Великие заблуждения и ошибки физиков XIX-XX столетий. Революция в современной физике.. Харьков, НТМТ, 2010, – 176 с. ISBN 978-617-578-010-7.
Личные инструменты