Поперечный плазменный резонанс и электромагнитное излучение ядерного взрыва

Материал из Большой Форум

Перейти к: навигация, поиск
Ф.Ф. Менде
Дата рождения:

02.07.1939 г.

Гражданство:

Флаг СССРФлаг Украины

Учёная степень:

доктор технических наук

Сайт:

http://fmnauka.narod.ru/ http://bolshoyforum.org/forum/index.php?board=50.0

Содержание

Введение

При ядерных взрывах возникает электромагнитное излучение в очень широком диапазоне частот от жесткого рентгеновского излучения до радиочастотного. Если излучение в рентгеновском и световом диапазоне можно объяснить излучением отдельных атомов и молекул в раскалённой плазме ядерного взрыва, то удовлетворительного объяснения природы излучения в радиодиапазоне пока нет. Такое излучение может быть следствием каких-то коллективных процессов, приводящих к образованию колеблющихся электрических диполей. Известно, что в плазме могут иметь место плазменные ленгмюровские колебания, однако эти колебания являются продольными и излучать электромагнитные волны не могут. Ниже будет показано, что в ограниченной незамагниченной плазме может иметь место и поперечный плазменный резонанс, результатом которого и может быть радиочастотное излучение http://arxiv.org/abs/physics/0506081 .

Поперечный плазменный резонанс в незамагниченной плазме

Теперь покажем, как плохое понимание физики процессов, имеющих место в проводящих средах, привело к тому, что оказалось незамеченным интересное физическое явление, которое может быть названо поперечный плазменный резонанс в незамагниченной плазме. Это, ранее неизвестное явление, может иметь важные технические приложения http://fmnauka.narod.ru/asd.pdf.

Известно, что ленгмюровский резонанс является продольным. Но продольный резонанс не может излучать поперечные радиоволны. Однако при взрывах ядерных зарядов, в результате которых образуется очень горячая плазма, имеет место электромагнитное излучение в очень широком диапазоне частот, вплоть до длинноволнового радиодиапазона. На сегодняшний день нет тех физических механизмов, которые смогли бы объяснить возникновение такого излучения. О существовании в незамагниченной плазме каких-либо других резонансов, кроме ленгмюровского, ранее известно не было, но в ограниченной плазме может существовать и поперечный резонанс, и частота такого резонанса совпадает с частотой ленгмюровского резонанса, т.е. эти разонансы являются вырожденными. Именно этот резонанс может быть причиной излучения радиоволн при взрывах ядерных зарядов.

Для выяснения условий возбуждения такого резонанса рассмотрим длинную линию, состоящую из двух идеально проводящих плоскостей, как показано на рис.1

Файл:Поперплазрез001.gif

Рис. 1 Двухпроводная линия, состоящая из двух идеально проводящих плоскостей

Погонная (приходящаяся на единицу длины) емкость и индуктивность такой линии без учёта краевых эффектов определяются соотношениями:

Файл:Поперплазрез002.gif и Файл:Поперплазрез003.gif

Поэтому с ростом длины линии ее суммарная емкость Файл:Поперплазрез004.gif и суммарная индуктивность Файл:Поперплазрез005.gif увеличиваются пропорционально ее длине.

Если в разомкнутую линию поместить плазму, носители заряда в которой могут двигаться без трения, и в поперечном направлении пропустить через плазму ток Файл:Поперплазрез006.gif , то заряды в связи с наличием у них массы, двигаясь с определенной скоростью, будут накапливать кинетическую энергию. Заметим, что здесь не рассматриваются технические вопросы, как и каким образом можно разместить плазму между плоскостями линии. В данном случае рассматриваются только принципиальные вопросы, касающиеся ранее неизвестного поперечного плазменного резонанса в незамагниченной плазме. Поскольку поперечная плотность тока в такой линии определяется соотношением

Файл:Поперплазрез007.gif

то суммарная кинетическая энергия всех движущихся зарядов будет записана:

Файл:Поперплазрез008.gif

(1.1)

Соотношение (1.1) связывает кинетическую энергию, накопленную в линии, с квадратом тока, поэтому коэффициент, стоящий в правой части этого соотношения перед квадратом тока, является суммарной кинетической индуктивностью линии.

Файл:Поперплазрез009.gif

(1.2)

Таким образом, величина

Файл:Поперплазрез010.gif

(1.3)

представляет удельную кинетическую индуктивность. Соотношение (1.3) получено для случая постоянного тока, когда токовое распределение является однородным.

В дальнейшем для большей наглядности полученных результатов, наряду с математическим их представлением, будем пользоваться методом эквивалентных схем. Отрезок, рассмотренной линии, длинной Файл:Поперплазрез011.gif может быть представлен в виде эквивалентной схемы, показанной на рис. 2 (а).

Из соотношения (2) видно, что в отличие от Файл:Поперплазрез012.gif и Файл:Поперплазрез013.gif величина Файл:Поперплазрез014.gif с ростом Файл:Поперплазрез015.gif не увеличивается, а уменьшается. Связано это с тем, что с ростом Файл:Поперплазрез015.gif количество параллельно включенных индуктивных элементов растет.

Эквивалентная схема участка линии, заполненной бездиссипативной плазмой, показана на рис. 2 (б). Сама линия при этом будет эквивалентна параллельному контуру с сосредоточенными параметрами:

Файл:Поперплазрез016.gif

последовательно с которым включена индуктивность

Файл:Поперплазрез017.gif

Но если вычислить резонансную частоту такого контура, то окажется, что эта частота вообще ни от каких размеров не зависит, действительно:

Файл:Поперплазрез018.gif

Получен очень интересный результат, который говорит о том, что резонансная частота рассмотренного макроскопического резонатора не зависит от его размеров. Может создаться впечатление, что это ленгмюровский резонанс, т.к. полученное значение резонансной частоты в точности соответствует значению частоты ленгмюровского резонанса. Но известно, что такой резонанс характеризует продольные волны, в то время как в длинной линии имеют место только поперечные волны. В этом случае величина фазовой скорости в направлении равна бесконечности и волновой вектор Файл:Поперплазрез019.gif.


Файл:Поперплазрез020.gif

Рис. 2.

  • а – эквивалентная схема отрезка двухпроводной линии;
  • б – эквивалентная схема отрезка двухпроводной линии, заполненной бесдиссипативной плазмой;
  • в - эквивалентная схема отрезка двухпроводной линии, заполненной диссипативной плазмой.

При этом волновое число определяется соотношением:

Файл:Поперплазрез021.gif

(1.4)

а групповая и фазовая скорости

Файл:Поперплазрез022.gif

(1.5)

Файл:Поперплазрез023.gif

(1.6)

где Файл:Поперплазрез024.gif- скорость света в вакууме.

Для данного случая фазовая скорость электромагнитной волны равна бесконечности, что соответствует поперечному резонансу на плазменной частоте. Следовательно, в каждый момент времени распределение полей и токов в такой линии однородно и не зависит от координаты Файл:Поперплазрез015.gif, а ток в плоскостях линии в направлении Файл:Поперплазрез015.gif отсутствует. Это, с одной стороны, означает, что индуктивность Файл:Поперплазрез013.gif не будет оказывать влияния на электродинамические процессы в такой линии, а вместо проводящих плоскостей могут быть использованы любые плоскости или устройства, ограничивающие плазму. Ещё раз отметим, что в данном случае обсуждается только принципиальная сторона вопроса, т.к., например, газоразрядную плазму ограничить для данных целей плоскостями нельзя, т.к. на эти плоскости будут оседать заряды. Возможно, это должна быть плазма в твердом теле, или газоразрядная плазма в магнитной ловушке или плазма ядерного взрыва, ограниченная границами облака взрыва.

Из соотношений (1.4) , (1.5) и (1.6) нетрудно видеть, что в точке Файл:Поперплазрез025.gif имеет место поперечный резонанс с бесконечной добротностью. При наличии потерь в резонаторе будет иметь место затухание, а в длинной линии в этом случае Файл:Поперплазрез026.gif, и в линии будет распространяться затухающая поперечная волна, направление распространения которой будет нормально направлению движения зарядов. Следует отметить, что факт существования такого резонанса ранее осознан не был и другими авторами не описан.

Перед тем, как перейти к более подробному рассмотрению данного вопроса, остановимся на энергетических процессах, имеющих место в рассмотренной линии в случае отсутствия потерь.

Характеристическое сопротивление плазмы, дающее отношение поперечных компонент электрического и магнитного полей, определяется соотношением

Файл:Поперплазрез027.gif

где Файл:Поперплазрез028.gif - характеристическое (волновое) сопротивление вакуума.

Полученное значение Файл:Поперплазрез029.gif характерно для поперечных электрических волн в волноводах. Видно, что когда Файл:Поперплазрез030.gif, то Файл:Поперплазрез031.gif, а Файл:Поперплазрез032.gif. В том случае, когда Файл:Поперплазрез033.gif> Файл:Поперплазрез034.gif в плазме существует и электрическая и магнитная составляющая поля. Удельная энергия этих полей запишется:

Файл:Поперплазрез035.gif

Таким образом, энергия, заключенная в магнитном поле, в Файл:Поперплазрез036.gif раз меньше, чем энергия, заключенная в электрическом поле. Отметим, что данное рассмотрение, которое является традиционным в электродинамике, является не полным, т.к. при этом не учтен еще один вид энергии, а именно кинетическая энергия носителей заряда. Оказывается, что кроме волн электрического и магнитного полей, несущих электрическую и магнитную энергии, в плазме существует еще и третья - кинетическая волна, несущая кинетическую энергию носителей тока. Удельная энергия этой волны записывается:

Файл:Поперплазрез037.gif

Таким образом, полная удельная энергия записывается как

Файл:Поперплазрез038.gif

Следовательно, для нахождения полной энергии, аккумулированной в единице объема плазмы, учет только полей Файл:Поперплазрез039.gif и Файл:Поперплазрез040.gif недостаточен. В точке Файл:Поперплазрез025.gif выполняются соотношения:

Файл:Поперплазрез041.gif

т.е. магнитное поле в плазме отсутствует, и плазма представляет макроскопический электромеханический резонатор с бесконечной добротностью, резонирующий на частоте Файл:Поперплазрез034.gif.

Поскольку при частотах Файл:Поперплазрез033.gif >Файл:Поперплазрез034.gif волна, распространяющаяся в плазме, несет на себе три вида энергии: магнитную, электрическую и кинетическую, то такую волну можно назвать электромагнитокинетической. Кинетическая волна представляет из себя волну плотности тока Файл:Поперплазрез042.gif. Эта волна сдвинута по отношению к электрической волне на угол Файл:Поперплазрез043.gif.

До сих пор рассматривался физически нереализуемый случай, когда потери в плазме отсутствуют, что соответствует бесконечной добротности плазменного резонатора. Если потери имеются, причем совершенно не важно какими физическими процессами такие потери обусловлены, то добротность плазменного резонатора будет конечной величиной. Для такого случая уравнения Максвелла будут иметь вид:

Файл:Поперплазрез044.gif

(1.7)

Наличие потерь учитывается членом Файл:Поперплазрез045.gif, причем, употребляя возле проводимости индекса Файл:Поперплазрез046.gif, тем самым подчеркивается, что нас не интересует сам механизм потерь, а интересует только сам факт их существования. Величину Файл:Поперплазрез047.gif определяет добротность плазменного резонатора. Для измерения Файл:Поперплазрез047.gif следует выбрать отрезок линии длиной Файл:Поперплазрез048.gif, величина которого значительно меньше длины волны в диссипативной плазме. Такой отрезок будет эквивалентен контуру с сосредоточенными параметрами:

Файл:Поперплазрез049.gif

(1.8)

Файл:Поперплазрез050.gif

(1.9)

Файл:Поперплазрез051.gif

(1.10)

где Файл:Поперплазрез052.gif – проводимость, подключенная параллельно Файл:Поперплазрез053.gif и Файл:Поперплазрез054.gif.

Проводимость и добротность в таком контуре связаны соотношением:

Файл:Поперплазрез055.gif

откуда, учитывая (1.8 – 1.10), получаем:

Файл:Поперплазрез056.gif

(1.11)

Таким образом, измеряя собственную добротность плазменного резонатора, можно определить Файл:Поперплазрез057.gif. Используя (1.2) и (1.11) получим:

Файл:Поперплазрез058.gif

(1.12)

Эквивалентная схема такой линии, заполненной диссипативной плазмой, представлена на рис. 2 (в).

Рассмотрим решение системы уравнений (1.12) в точке Файл:Поперплазрез059.gif, при этом, поскольку

Файл:Поперплазрез060.gif

Получаем

Файл:Поперплазрез061.gif

Эти соотношения и определяют волновые процессы в точке резонанса.

Если потери в плазме, заполняющей линию малы, а к линии подключен сторонний источник тока, то можно положить:

Файл:Поперплазрез062.gif

(1.13)

где Файл:Поперплазрез063.gif – плотность сторонних токов.

Проинтегрировав (1.13) по времени и разделив обе части на Файл:Поперплазрез064.gif, получим

Файл:Поперплазрез065.gif

(1.14)

Если (1.14) проинтегрировать по поверхности нормальной к вектору Файл:Поперплазрез066.gif и ввести электрический поток как Файл:Поперплазрез067.gif получим:

Файл:Поперплазрез068.gif

(1.15)

где Файл:Поперплазрез069.gif – сторонний ток.

Уравнение (1.15) является уравнением гармонического осциллятора с правой частью, характерное для двухуровневых лазеров [1]. Если источник возбуждения отключить, то соотношение (1.14) представляет “холодный” лазерный резонатор, в котором колебания будут затухать по экспоненциальному закону

Файл:Поперплазрез070.gif

т.е. макроскопический электрический поток Файл:Поперплазрез071.gif будет осцилировать с частотой Файл:Поперплазрез034.gif, время релаксации при этом определяется соотношением:

Файл:Поперплазрез072.gif

Задача создания лазера заключается теперь лишь в умении возбудить такой резонатор.

Если резонатор возбуждается сторонними токами, то такой резонатор для этих токов представляет полосовой фильтр с резонансной частотой равной плазменной частоте с полосой пропускания Файл:Поперплазрез073.gif.

Другим важным практическим применением поперечного плазменного резонанса является возможность его использование для разогрева и диагностики плазмы. Если добротность плазменного резонатора велика, что может быть получены высокие уровни электрических полей, а значит и высокие энергии носителей зарядов.

Таким образом, мы установили, что в незамагниченной ограниченной плазме может иметь место поперечный плазменный резонанс, который и может служить источником излучения, частота которого зависит от плотности плазмы. В процессе эволюции облака взрыва ядерного заряда плотность плазмы колеблется в самых широких пределах, следовательно, и излучаемые такой плазмой частоты могут варьироваться в самых широких пределах.

Однако возникает ещё один важный вопрос. Для возникновения колебаний в ограниченной плазме недостаточно наличия самой плазмы, нужны ещё и механизмы, которые приводят к начальному пространственному коллективному разделению (неустойчивости) больших групп зарядов, которые в последующем и будут осуществлять затухающий колебательный процесс дипольного характера, приводящих к излучению.

Механизм плазменных неустойчивостей в облаке взрыва ядерного заряда

Топология электрического импульса термоядерного взрыва, произведённого в космосе, показана на рис. 2.

Файл:Поперплазрез097.jpg

Рис. 2. Экспериментальная зависимость амплитуды электрического импульса ядерного взрыва от времени.

Особенностью импульса является его очень маленькая длительность, которая составляет порядка 100 нс. Это означает, что за такое короткое время происходит и детонация ядерного топлива и его охлаждение до температур значительно ниже тех, которые имеют место в момент детонации. Поскольку основное тепловое излучение идёт с поверхности облака, то очевидным является большой градиент температур в самом облаке. С точки зрения представлений современной электродинамики и теории относительности, такие градиенты тоже не могут дать зарядового разделения, поскольку в СТО заряд является инвариантом скорости.

Однако концепция скалярно-векторного потенциала, представленная в работах http://fmnauka.narod.ru/asd.pdf http://arxiv.org/abs/physics/0402084 , указывает на то, что заряд не является инвариантом скорости, а зависит от его относительной скорости. Коротко напомним эту концепцию.

Законы магнитоэлектрической и электромагнитной индукции имеют симметричную форму и записываются следующим образом:

Файл:Поперплазрез074.gif

(2.1)

или

Файл:Поперплазрез075.gif

(2.2)

Для постоянных полей эти соотношения имеют вид:

Файл:Поперплазрез076.gif

(2.3)

В соотношениях (2.1-2.3), предполагающих справедливость преобразований Галилея. Штрихованные и не штрихованные величины представляют поля и элементы в движущейся и неподвижной ИСО соответственно. Следует заметить, что преобразования (2.3) ранее можно было получить только из преобразований Лоренца.

Соотношения (2.1–2.3), представляющие законы индукции, не дают информации о том, каким образом возникли поля в исходной неподвижной ИСО. Они описывают только закономерности распространения и преобразования полей в случае движения по отношению к уже существующим полям.

Соотношения (2.3) свидетельствуют о том, что в случае относительного движения систем отсчета, между полями Файл:Поперплазрез066.gif и Файл:Поперплазрез077.gif существует перекрестная связь, т.е. движение в полях Файл:Поперплазрез077.gif приводит к появлению полей Файл:Поперплазрез066.gif и наоборот. Из этих соотношений вытекают дополнительные следствия, которые впервые были рассмотрены в работе http://fmnauka.narod.ru/asd.pdf . Электрическое поле Файл:Поперплазрез078.gif за пределами заряженного длинного стержня, на единицу длины которого приходится заряд Файл:Поперплазрез079.gif, убывает по закону Файл:Поперплазрез080.gif, где Файл:Поперплазрез081.gif- расстояние от центральной оси стержня до точки наблюдения.

Если параллельно оси стержня в поле Файл:Поперплазрез039.gif начать двигать со скоростью Файл:Поперплазрез082.gif другую ИСО, то в ней появится дополнительное магнитное поле Файл:Поперплазрез083.gif. Если теперь по отношению к уже движущейся ИСО начать двигать третью систему отсчета со скоростью Файл:Поперплазрез082.gif, то уже за счет движения в поле Файл:Поперплазрез084.gif появится добавка к электрическому полю Файл:Поперплазрез085.gif. Данный процесс можно продолжать и далее, в результате чего может быть получен ряд, дающий величину электрического поля Файл:Поперплазрез086.gif в движущейся ИСО при достижении скорости Файл:Поперплазрез087.gif, когда Файл:Поперплазрез088.gif, а Файл:Поперплазрез089.gif. В конечном итоге в движущейся ИСО величина динамического электрического поля окажется больше, чем в исходной и определиться соотношением:

Файл:Поперплазрез090.gif

Если речь идет об электрическом поле одиночного заряда Файл:Поперплазрез091.gif, то его электрическое поле будет определяться соотношением:

Файл:Поперплазрез092.gif

где Файл:Поперплазрез093.gif- нормальная составляющая скорости заряда к вектору, соединяющему движущийся заряд и точку наблюдения.

Выражение для скалярного потенциала, создаваемого движущимся зарядом, для этого случая запишется следующим образом :

Файл:Поперплазрез094.gif

(2.4)

где Файл:Поперплазрез095.gif- скалярный потенциал неподвижного заряда.

Потенциал Файл:Поперплазрез096.gif может быть назван скалярно-векторным, т.к. он зависит не только от абсолютной величины заряда, но и от скорости и направления его движения по отношению к точке наблюдения. Максимальное значение этот потенциал имеет в направлении нормальном к движению самого заряда.

Но такая зависимость скалярного потенциала от скорости означает и зависимость от неё самого заряда. Именно это обстоятельство и приводит к зарядовому разбалансу в плазме, в которой имеются большие градиенты температур. Именно этот зарядовый разбаланс и его эволюция в процессе дальнейшей быстрой эволюции температурных градиентов в плазме и приводит к неустойчивостям, возбуждающим поперечные плазменные колебания в облаке ядерного взрыва.

Следует сказать, что подобный процесс имеет место и на поверхности Солнца, где имеются мощные магнитные поля. Эти поля являются результатом того, что отдельные участки солнечной поверхности имеют разную температуру и в связи с зарядовым разбалансом, который мы объяснили выше, между такими участками текут большие токи, которые и создают указанные поля.

Литература

  • 1. Ярив А. Квантовая электродинамика и нелинейная оптика. М: Сов. радио, 1973.- 454 с.
Личные инструменты