Векторный потенциал магнитного поля и природа его возникновения

Материал из Большой Форум

Перейти к: навигация, поиск
Федор Федорович Менде
Дата рождения:

02.07.1939 г.

Гражданство:

Флаг СССРФлаг Украины

Учёная степень:

доктор технических наук

Сайт:

http://fmnauka.narod.ru/ http://bolshoyforum.org/forum/index.php?board=50.0

Содержание

Векторный потенциал магнитного поля в классической электродинамике

Длительное время считалось, что векторный потенциал магнитного поля есть некоторое математическое понятие, не имеющее какого-либо физического смысла. Уже позже начали понимать, что производная этого потенциала по времени определяет электрическое поле, а также то, что от этого потенциала зависит силовое взаимодействие токонесущих систем.

Магнитное поле в своё время было введено Ампером феноменологическим путём на основе наблюдения силового взаимодействия между проводниками, по которым течёт ток. Закон Ампера, выраженный в векторной форме, определяет магнитное поле в точке наблюдения в следующем виде:

Файл:Vpmagpol001.gif

где Файл:Vpmagpol002.gif - ток в элементе Файл:Vpmagpol003.gif, Файл:Vpmagpol004.gif - вектор, направленный из Файл:Vpmagpol003.gifв точку наблюдения (рис. 1).

Можно показать, что

Файл:Vpmagpol005.gif

и, кроме того, что

Файл:Vpmagpol006.gif.

Файл:Vpmagpol007.gif

Рис. 1. Формирование векторного потенциала элементом проводника Файл:Vpmagpol008.gif, по которому течёт ток Файл:Vpmagpol002.gif.

Но ротор Файл:Vpmagpol003.gif равен нулю и поэтому окончательно

Файл:Vpmagpol009.gif

где

Файл:Vpmagpol010.gif

(1.1)

векторный потенциал магнитного поля.

Замечательным свойством этого выражения является то, что зависимость векторного потенциал обратно пропорциональна расстоянию до точки наблюдения, что характерно для законов излучения.

Поскольку Файл:Vpmagpol011.gif, где Файл:Vpmagpol012.gif количество зарядов, приходящееся на единицу длины проводника, из (1.1) получаем:

Файл:Vpmagpol013.gif

Если размер элемента Файл:Vpmagpol003.gif, по которому течёт ток, значительно меньше, чем расстояние до точки наблюдения, то векторный потенциал, порождаемый элементом Файл:Vpmagpol003.gif, по которому течёт ток Файл:Vpmagpol011.gif имеет вид

Файл:Vpmagpol014.gif

(1.2)

Из этого соотношения следует интересный факт. Даже на постоянном токе зависимость векторного потенциала от расстояния соответствует законам излучения. И, казалось бы, что, меняя скачками ток в коротком отрезке провода, и измеряя векторный потенциал в удалённой точке, можно передавать информацию в эту точку по законам излучения. Но этому мешает то обстоятельство, что цепь постоянного тока всегда замкнута на локальный источник питания и поэтому всегда есть как прямой, так и обратный провод. Эта особенность приводит к тому, что скалярный потенциал в дальней зоне оказывается обратно пропорционален квадрату расстояния до наблюдаемой точки. Это легко показать на примере двух параллельных элементов проводника, расположенных на расстоянии Файл:Vpmagpol015.gif (рис. 2), в которых текут встречные токи.

В этом случае векторный потенциал в удалённой зоне определяется как сумма векторных потенциалов, создаваемых в дальней зоне каждым токовым элементом в отдельности.

Файл:Vpmagpol016.gif

Рис. 2. Формирование векторного потенциала двумя параллельными участками проводников, по которым текут встречные токи.

При условии Файл:Vpmagpol100.gif >> Файл:Vpmagpol015.gifполучаем:

Файл:Vpmagpol018.gif.

(1.3)

Поскольку

Файл:Vpmagpol019.gif

(1.4)

где Файл:Vpmagpol020.gif - магнитная проницаемость вакуума, из (1.2) и (1.3) получаем:

Файл:Vpmagpol021.gif

(1.5)

Файл:Vpmagpol022.gif

(1.6)

где Файл:Vpmagpol023.gif - ускорение зарядов.

Из уравнений Максвелла известно, что электрические поля распространяются в свободном пространстве со скоростью

Файл:Vpmagpol024.gif

где Файл:Vpmagpol025.gif - диэлектрическая проницаемость вакуума. Если учесть это соотношение, то равенства (1.5) и (1.6) можно переписать:

Файл:Vpmagpol026.gif

Файл:Vpmagpol027.gif

Если имеется точечный заряд Файл:Vpmagpol028.gif, то эти соотношения принимают вид:

Файл:Vpmagpol029.gif

Файл:Vpmagpol030.gif

Основная задача законов индукции заключается в выяснении причин появления в пространстве электрических полей, а, следовательно, и сил действующих на заряд, в данной точке пространства, в данной ИСО. Это главная задача индукции, т.к. только электрические поля, генерируемые тем или иным способом, оказывают силовые воздействия на заряд. Такие поля могут возникать при изменении расположения других зарядов вокруг заданной точки пространства. Если вокруг рассматриваемой точки имеется какая-то статическая конфигурация зарядов, то напряженность электрического поля в этой точке будет определяться соотношением Файл:Vpmagpol031.gif, где Файл:Vpmagpol032.gif скалярный потенциал, определяемый данной конфигурацией по принципу суперпозиций. Если изменить расположение зарядов, то этой новой конфигурации будут соответствовать и другие значения скалярного потенциала, а, следовательно, и другие значения напряженности электрического поля. Но такое перемещение зарядов в пространстве в обязательном порядке сопряжено с их ускорением и последующим замедлением. Ускорение или замедление зарядов как показано выше также приводит к возникновению в окружающем пространстве электрических полей индукции.

Основным законом индукции в классической электродинамике является закон Фарадея, который для вакуума записывается следующим образом:

Файл:Vpmagpol033.gif

(1.7)

где Файл:Vpmagpol034.gif- вектор магнитной индукции, Файл:Vpmagpol035.gif - поток магнитной индукции.

Из этого закона следует, что циркуляция вектора электрического поля равна изменению потока магнитной индукции через площадку, которую охватывает данный контур. Сразу подчеркнём то обстоятельство, что рассматриваемый закон представляет процессы взаимной индукции, т.к. для получения циркуляции вектора Файл:Vpmagpol036.gif берётся стороннее магнитное поле, сформированное сторонним источником. Этот закон является интегральным и не даёт локальной связи между магнитным и электрическим полем. Из соотношения (1.7) получают первое уравнение Максвелла

Файл:Vpmagpol037.gif

(1.8)

Сразу укажем на терминологическую ошибку. Закон Фарадея следует называть не законом электромагнитной индукции, как это делается сейчас в существующей литературе, а законом магнитоэлектрической индукции, т.к. изменение магнитных полей приводит к возникновению электрических полей, а не наоборот.

Но здесь необходимо сделать одно замечание. Переход от интегральной формы (1.7) к дифференциальной форме (1.8) не вполне законен. Правомерность такого перехода справедлива только в том случае, когда контур интегрирования в левой части соотношения (1.7) охватывает площадь интегрирования в интеграле правой части. Но опыты, которые провел Фарадей, совсем не предполагают этого, контур интегрирования в левой части, а вернее проволока, в которой индуцировалась э.д.с., может не совпадать с границами площадки интегрирования в правой части. Главным условием соблюдения соотношения (1.7) являлось то, что контур интегрирования в правой части должен охватывать контур интегрирования в левой. Примером тому может служить случай длинного соленоида, когда поток индукции сосредоточен во внутренней его части, а контур интегрирования может проходить за его пределами, где магнитных полей нет. Важно только, чтобы контур интегрирования в левой части соотношения (1.7) охватывал соленоид.

Введём векторный потенциал Файл:Vpmagpol038.gif, удовлетворяющий равенству Файл:Vpmagpol039.gif, где контур интегрирования совпадает с контуром интегрирования в соотношении (1.6), а вектор Файл:Vpmagpol040.gif определен на всех его участках, тогда

Файл:Vpmagpol019.gif

(1.9)

Это соотношение ранее уже использовалось (см. (1.4)).

Путём введения вектор Файл:Vpmagpol041.gif обеспечивается локальную связь между этим вектором и электрическим полем, а также между пространственными производными этого вектора и магнитным полем. Следовательно, зная производные вектора Файл:Vpmagpol042.gif по времени и по координатам, можно определить индуцируемые электрические и магнитные поля. Введенный таким образом вектор Файл:Vpmagpol042.gif, связан с магнитным полем соотношением:

Файл:Vpmagpol043.gif

(1.10)

Таким образом, вектор Файл:Vpmagpol042.gif является более универсальным понятием, чем вектор магнитного поля, поскольку даёт возможность определять как магнитные, так и электрические поля.

До сих пор решение вопроса о возникновении электрических полей в движущихся системах можно было осуществлять двумя путями. Первый - заключался в вычислении силы Лоренца, действующей на движущиеся заряды, второй путь заключался в измерении изменения магнитного потока через исследуемый контур. Оба метода давали одинаковый результат. Это было непонятно. В связи с непониманием физической природы такого положения дел и начали считать, что униполярный генератор является исключением из правила потока [1]. Рассмотрим эту ситуацию подробнее.

Для того чтобы ответить на поставленный вопрос, следует несколько изменить соотношение (1.9), заменив в нём частную производную на полную:

Файл:Vpmagpol044.gif

(1.11)

Штрих около вектора Файл:Vpmagpol045.gif означает, что это поле определяется в движущейся системе координат, в то время как вектор Файл:Vpmagpol042.gif определен в неподвижной системе. Таким образом, предполагается, что векторный потенциал может иметь, как локальную, так и конвекционную производную, т.е. может меняться, как за счет изменения локального времени, так и за счет движения в пространственно меняющемся поле этого потенциала. Соотношение (1.11) можно переписать следующим образом:

Файл:Vpmagpol046.gif

где Файл:Vpmagpol047.gif - скорость штрихованной системы.

Следовательно, дополнительная сила, действующая на заряд в движущейся системе, запишется

Файл:Vpmagpol048.gif

Эта сила зависит только от пространственных производных векторного потенциала и скорости штрихованной системы.

Заряд, движущийся в поле векторного потенциала Файл:Vpmagpol042.gif со скоростью Файл:Vpmagpol047.gif, обладает также потенциальной энергией [1]

Файл:Vpmagpol049.gif

Поэтому должна существовать еще одна сила, действующая на заряд в движущейся ИСО, а именно:

Файл:Vpmagpol051.gif

Таким образом, величина Файл:Vpmagpol052.gif играет такую же роль, что и скалярный потенциал Файл:Vpmagpol032.gif, градиент которого дает электрическое поле. Следовательно, суммарная сила, которая действует на заряд, движущийся в поле векторного потенциала, может иметь три составляющие и запишется как

Файл:Vpmagpol053.gif

(1.12)

Первая из составляющих этой силы действует на неподвижный заряд, когда векторный потенциал имеет локальную производную по времени. Вторая составляющая также определяет изменения векторного потенциала во времени, но они связаны уже с движением заряда в пространственно меняющемся поле этого потенциала. Совсем иная природа у силы, которая определяется последним слагаемым соотношения (1.12). Она связана с тем, что заряд, двигающийся в поле векторного потенциала, обладает потенциальной энергией, градиент которой и дает силу. Из соотношения (1.12) следует

Файл:Vpmagpol054.gif

(1.13)

Это и есть полный закон взаимной индукции. Он определяет все электрические поля, которые могут возникать в заданной точке пространства, причем эта точка может быть как неподвижной, так и движущейся. Этот единый закон включает в себя и закон Фарадея, и ту часть силы Лоренца, которая связана с движением заряда в магнитном поле. Этот закон без всяких исключений дает ответ на все вопросы, касающиеся взаимной магнитоэлектрической индукции. Показательно, что, если взять ротор от обеих частей равенства (1.13), пытаясь получить первое уравнение Максвелла, то сразу будет потеряна существенная часть информации, т.к. ротор от градиента тождественно равен нулю.

Если выделить те силы, которые связаны с движением заряда в поле векторного потенциала, и учесть, что

Файл:Vpmagpol055.gif

то из (1.12) получим

Файл:Vpmagpol056.gif

(1.14)

Учитывая (1.10), запишем:

Файл:Vpmagpol057.gif

(1.15)

или

Файл:Vpmagpol058.gif

(1.16)

Окончательно:

Файл:Vpmagpol059.gif

(1.17)

Может показаться, что соотношение (11.17) представляет силу Лоренца, однако, это не так. В этом соотношении и поле Файл:Vpmagpol045.gif, и поле Файл:Vpmagpol060.gif являются индуцированными, первое связано с локальной производной векторного потенциала по времени, второе же обязано движению заряда в пространственно меняющемся поле этого потенциала. Чтобы получить полную силу, действующую на заряд, необходимо для случая, когда система не является электронейтральной, к правой части соотношения (1.17) добавить слагаемое Файл:Vpmagpol061.gif:

Файл:Vpmagpol062.gif

где Файл:Vpmagpol032.gif - скалярный потенциал, создаваемый в точке наблюдения нескомпенсированными зарядами.

Теперь соотношение (1.13) можно переписать следующим образом:

Файл:Vpmagpol063.gif

(1.18)

или, собрав первые два члена в полную производную векторного потенциала по времени, и, внеся под знак градиента два последних члена правой части соотношения (1.18), получим:

Файл:Vpmagpol064.gif

(1.19)

Если обе части соотношения (1.19) умножить на величину заряда, то можно получить полную силу, действующую на заряд. От силы Лоренца она будет отличаться силой Файл:Vpmagpol065.gif. Из соотношения (15.13) видно, что величина Файл:Vpmagpol066.gif играет роль обобщенного скалярного потенциала. Если взять ротор от обеих частей соотношения (1.19) и учесть, что Файл:Vpmagpol067.gif, то получим:

Файл:Vpmagpol068.gif

Если в данном соотношении заменить полную производную на частную, т.е. считать, что поля определяются только в заданной инерциальной системе, то получим первое уравнение Максвелла.

Ранее сила Лоренца рассматривалась как фундаментальный опытный факт, не связанный с законом индукции. Расчетным путем получить последнее слагаемое правой части соотношения (1.17) можно было только в рамках СТО. В данном случае все слагаемые соотношение (1.17) получены из закона индукции в рамках преобразований Галилея. Причем соотношение (1.17) это и есть полный закон взаимной индукции, если его записать в терминах векторного потенциала. Это есть как раз то правило, которое дает возможность, зная поля в одной ИСО, вычислять поля в другой инерциальной системе, и этого правила до сих пор не было в классической электродинамике.

Структуру сил, действующих на движущийся заряд, легко понять на примере, когда заряд движется между двумя параллельными плоскостями, по которым протекает ток (рис. 3).

Выберем оси координат таким образом, чтобы ось Файл:Vpmagpol069.gif была направлена нормально к плоскостям, а ось Файл:Vpmagpol070.gif параллельна им. Тогда для случая, когда расстояние между пластинами значительно меньше их размеров (в данном случае на рисунке это соотношение не соблюдено), магнитное

Файл:Vpmagpol071.gif

Рис. 3. Силы, действующие на заряд, движущийся в поле векторного потенциала.

поле Файл:Vpmagpol072.gif между ними будет равно удельному току Файл:Vpmagpol073.gif, протекающему по пластинам. Если положить, что векторный потенциал на нижней пластине равен нулю, то его Файл:Vpmagpol070.gif – компонента, отсчитываемая от нижней пластины, будет возрастать по закону Файл:Vpmagpol074.gif.

Если электрон двигается в направлении оси Файл:Vpmagpol070.gif вблизи нижней пластины со скоростью Файл:Vpmagpol075.gif, то сила Файл:Vpmagpol076.gif, действующая на заряд, определяется последним слагаемым соотношения (1.12) и равна

Файл:Vpmagpol077.gif

(1.20)

Направлена эта сила от нижней пластины к верхней.

Если заряд двигается вдоль оси Файл:Vpmagpol069.gif от нижней пластины к верхней со скоростью Файл:Vpmagpol078.gif, то для нахождения силы следует использовать уже второе слагаемое правой части соотношения (1.12). Эта сила по абсолютной величине опять равна силе, определяемой соотношением (1.20), и направлена в сторону противоположную оси Файл:Vpmagpol070.gif. При любых других направлениях движения суммарная сила будет векторной суммой двух сил, представляемых последними слагаемыми соотношения (1.12). Суммарная же величина этой силы по-прежнему будет определяться соотношением (1.17), а сама сила всегда будет нормальной к направлению движения заряда. Ранее наличие такой силы рассматривалось как действие силы Лоренца, природа которой была неизвестна и вводилась как некая экспериментальная аксиома. Теперь понятно, что она является следствием совместного действия двух сил, различных по своей природе, физический смысл которых теперь определён. Однако в данном случае возникает один существенный вопрос. С точки зрения третьего закона Ньютона, если на заряд действует сила, то должна быть и равнодействующая ей сила и место приложение такой силы должно быть известно. Концепция магнитного поля ответа на этот вопрос не даёт, поскольку и магнитное поле, и векторный потенциал выступают в качестве самостоятельной субстанции, с которой и происходит такое взаимодействие.

Понимание структуры сил дает возможность посмотреть на уже известные явления с другой точки зрения. Например, с чем связано существование сил, которые растягивают петлю с током? В данном случае это обстоятельство может интерпретироваться не как действие силы Лоренца, а с энергетической точки зрения. Ток, текущий по элементу кольцевого витка находится в поле векторного потенциала, создаваемого остальными элементами этого витка, а, следовательно, имеет запас потенциальной энергии. Сила, действующая на такой элемент, обусловлена наличием у него градиента потенциальной энергии, и пропорциональна градиенту скалярного произведения величины тока на векторный потенциал в данной точке. Таким образом, можно объяснить и происхождение пондеромоторных сил. Если ток разбить на отдельные токовые нити, то все они будут по отдельности создавать поле векторного потенциала. Суммарное поле будет действовать на каждую нить в отдельности, и в соответствии с последним слагаемым правой части соотношения (1.12) это будет приводить к взаимному их притяжению.

Следует подчеркнуть, что в соотношении (1.14) и (1.19) все поля имеют индукционное происхождение, и они связаны то ли с локальной производной векторного потенциала, то ли с движением заряда в пространственно меняющемся поле этого потенциала. Если поля во времени не изменяются, то в правой части соотношений (1.14) и (1.15) остаются только последние слагаемые, и они объясняют работу всех существующих электрогенераторов с движущимися механическими частями, в том числе и работу униполярного генератора. Соотношение (1.13) дает возможность физически объяснить все составляющие напряженности электрического поля, возникающего в неподвижной и движущейся ИСО. В случае униполярного генератора в формировании силы, действующей на заряд, принимают участие два последних слагаемых правой части равенства (1.13), внося одинаковые вклады. Теперь ясно, что представление закона индукции в терминах векторного потенциала это и есть тот „основополагающий принцип”, об отсутствии котрого говорится в работе [1].

При рассмотрении действия магнитного поля на движущийся заряд уже отмечалась его посредническая роль и отсутствие закона прямого действия между движущимися зарядами. Введения векторного потенциала также не дает ответа на этот вопрос, этот потенциал по-прежнему играет посредническую роль и не отвечает на вопрос о конкретном месте приложения сил.

Тепер покажем, что соотношения, полученные путем феноменологического введения магнитного векторного потенциала, могут быть получены и непосредственно из закона Фарадея. Сам Фарадей при проведении своих опытов установил, что в контуре индуцируется ток, когда в соседнем контуре включается или выключается постоянный ток, или соседний контур с постоянным током движется относительно первого контура. Поэтому в общем виде закон Фарадея следует записать следующим образом:

Файл:Vpmagpol079.gif

(1.21)

Данная запись закона указывает на то, что при записи циркуляции вектора Файл:Vpmagpol036.gif в движущейся (штрихованной) системе координат, около Файл:Vpmagpol036.gif и Файл:Vpmagpol003.gif следует ставить штрихи, указывающие на тот, что поток определён в одной ИСО, а поля в другой. Если же циркуляция определяется только в заданной ИСО, то штрихи около Файл:Vpmagpol036.gif и Файл:Vpmagpol003.gif отсутствуют, но при этом справа в выражении (1.21) должна стоять частная производная по времени.

Полная производная по времени в соотношении (1.21) означает независимость конечного результата появления э.д.с. в контуре от способа изменения потока. Поток может изменяться как за счет локальной производной магнитного потока по времени, так и за счет того, что ИСО, в которой измеряется циркуляция Файл:Vpmagpol080.gif, движется в пространственно меняющемся поле Файл:Vpmagpol081.gif. Величину магнитного потока в соотношении (1.21) вычисляем при помощи выражения:

Файл:Vpmagpol082.gif

(1.22)

где магнитная индукция Файл:Vpmagpol034.gif определена в неподвижной системе координат, а элемент Файл:Vpmagpol083.gif определен в движущейся системе.

Учитывая (1.21), из (1.22) получаем:

Файл:Vpmagpol084.gif

Поскольку Файл:Vpmagpol085.gif, запишем:

Файл:Vpmagpol086.gif

(1.23)

В данном случае контурный интеграл берется по контуру Файл:Vpmagpol087.gif, охватывающему площадкуФайл:Vpmagpol083.gif. Сразу отметим, что все дальнейшее изложение будет вестись в предположении справедливости преобразований Галилея, т.е. Файл:Vpmagpol088.gif и Файл:Vpmagpol089.gif. ПосколькуФайл:Vpmagpol090.gif, из (1.23) получаем соотношение

Файл:Vpmagpol091.gif

(1.24)

Из соотношения (1.24) следует, что при движении в магнитном поле возникает дополнительное электрическое поле, определяемое последним слагаемым этого соотношения. Заметим, что данное соотношение получено не путем введения силы Лоренца аксиоматическим способом или из ковариантных преобразований Лоренца, а непосредственно из закона Фарадея, причем в рамках преобразований Галилея. Таким образом, сила Лоренца является прямым следствием закона магнитоэлектрической индукции.

Учитывая, чтоФайл:Vpmagpol092.gif, из соотношение (1.23) получаем

Файл:Vpmagpol093.gif

и далее

Файл:Vpmagpol054.gif

(1.25)

Снова получено соотношение (1.13), но получено оно непосредственно из закона Фарадея. Правда, и этот путь пока не проливает свет на физическую природу происхождения силы Лоренца, так как истинные физические причины возникновения и магнитного поля и векторного потенциала нам все равно пока не ясны.

Физические причины возникновения векторного потенциала магнитного поля

Тот путь, который продемонстрирован в предыдущем разделе, касающийся введения полных производных полей, пройден в значительной части ещё Герцем, о чём подробно написано в работе [2]. Правда, Герц не вводил понятие векторных потенциалов, а оперировал только полями, но это не умаляет его заслуг. Он ошибался лишь в том, что считал электрические и магнитные поля инвариантами скорости.

Поля, которые создаются в данной ИСО движущимися зарядами и движущимися источниками электромагнитных волн, будем называть динамическими. Примером динамического поля может служить магнитное поле, которое возникает вокруг движущихся зарядов.

В классической электродинамике отсутствуют правила преобразования электрических и магнитных полей при переходе из одной инерциальной системы в другую. Этот недостаток устраняет СТО, основой которой являются ковариантные преобразования Лоренца. При всей математической обоснованности такого подхода физическая сущность таких преобразований до настоящего времени остаётся невыясненной [3].

В данном разделе будет сделана попытка найти именно физически обоснованные пути получения преобразований полей при переходе из одной ИСО в другую, а также выяснить какие динамические потенциалы и поля могут генерировать движущиеся заряды. Первый шаг, продемонстрированный в работах [4-7], был сделан в этом направлении путём введения симметричных законов магнитоэлектрической и электромагнитной индукции. Эти законы записываются следующим образом:

Файл:Vpmagpol094.gif

(2.1)

или

Файл:Vpmagpol095.gif

(2.2)

Для постоянных полей эти соотношения имеют вид:

Файл:Vpmagpol096.gif

(2.3)

В соотношениях (2.1-2.3), предполагающих справедливость преобразований Галилея, штрихованные и не штрихованные величины представляют поля и элементы в движущейся и неподвижной ИСО соответственно. Следует заметить, что преобразования (2.3) ранее можно было получить только из преобразований Лоренца.

Соотношения (2.1–2.3), представляющие законы индукции, не дают информации о том, каким образом возникли поля в исходной неподвижной ИСО. Они описывают только закономерности распространения и преобразования полей в случае движения по отношению к уже существующим полям.

Соотношения (2.3) свидетельствуют о том, что в случае относительного движения систем отсчета, между полями Файл:Vpmagpol045.gif и Файл:Vpmagpol097.gif существует перекрестная связь, т.е. движение в полях Файл:Vpmagpol097.gif приводит к появлению полей Файл:Vpmagpol045.gif и наоборот. Из этих соотношений вытекают дополнительные следствия, которые впервые были рассмотрены в работе [4]. Электрическое поле Файл:Vpmagpol098.gif за пределами заряженного длинного стержня, на единицу длины которого приходится заряд Файл:Vpmagpol012.gif, убывает по закону Файл:Vpmagpol099.gif, где Файл:Vpmagpol100.gif- расстояние от центральной оси стержня до точки наблюдения.

Если параллельно оси стержня в поле Файл:Vpmagpol101.gif начать двигать со скоростью Файл:Vpmagpol102.gif другую ИСО, то в ней появится дополнительное магнитное поле Файл:Vpmagpol103.gif. Если теперь по отношению к уже движущейся ИСО начать двигать третью систему отсчета со скоростью Файл:Vpmagpol102.gif, то уже за счет движения в поле Файл:Vpmagpol104.gif появится добавка к электрическому полю Файл:Vpmagpol105.gif. Данный процесс можно продолжать и далее, в результате чего может быть получен ряд, дающий величину электрического поля Файл:Vpmagpol106.gif в движущейся ИСО при достижении скорости Файл:Vpmagpol107.gif, когда Файл:Vpmagpol108.gif, а Файл:Vpmagpol109.gif. В конечном итоге в движущейся ИСО величина динамического электрического поля окажется больше, чем в исходной и определиться соотношением:

Файл:Vpmagpol110.gif

Если речь идет об электрическом поле одиночного заряда , то его электрическое поле будет определяться соотношением:

Файл:Vpmagpol111.gif

где Файл:Vpmagpol112.gif- нормальная составляющая скорости заряда к вектору, соединяющему движущийся заряд и точку наблюдения.

Выражение для скалярного потенциала, создаваемого движущимся зарядом, для этого случая запишется следующим образом:

Файл:Vpmagpol113.gif

(2.4)

где Файл:Vpmagpol114.gif- скалярный потенциал неподвижного заряда. Потенциал Файл:Vpmagpol115.gif может быть назван скалярно-векторным, т.к. он зависит не только от абсолютной величины заряда, но и от скорости и направления его движения по отношению к точке наблюдения. Максимальное значение этот потенциал имеет в направлении нормальном к движению самого заряда. Более того, если скорость заряда меняется, что связано с его ускорением, то могут быть вычислены и электрические поля, индуцируемые ускоряемым зарядом.

Фарадей установил закон индукции, проводя эксперименты на соленоидах, включая и выключая в них ток, или двигая по отношению к соленоидам, через которые протекал постоянный ток, витки проволоки, к которым подключался гальванометр. Его точка зрения, которая считается верной и сегодня, сводилась к тому, что если к соленоиду подключён источник постоянного напряжения Файл:Vpmagpol116.gif, то ток во всех его витках нарастает по линейному закону

Файл:Vpmagpol117.gif

(2.5)

где Файл:Vpmagpol118.gif - индуктивность соленоида.

Следовательно, магнитное поле при такой интерпретации на всём протяжении соленоида будет нарастать синхронно. Однако так ли это на самом деле? Для того чтобы разобраться в этом, рассмотрим вопрос о том, как будет нарастать ток в закороченном отрезке длинной линии. Если линию (рис. 4) закоротить на расстоянии Файл:Vpmagpol119.gif от ее начала, то суммарная индуктивность линии составит величину Файл:Vpmagpol120.gif. Если волновое сопротивление линии составляет Файл:Vpmagpol121.gif и к ней подключить постоянного напряжения, в ней начнет распространяться волна тока Файл:Vpmagpol122.gif и напряжения Файл:Vpmagpol123.gif, как показано на рис. 4 . Волна тока в правой своей части имеет переходной участок Файл:Vpmagpol124.gif, который именуется фронтом напряжения. Этот участок соответствует времени переходного процесса Файл:Vpmagpol125.gif, за которое напряжение источника, подключаемого к линии, достигает на её вход своего номинального значения.

Файл:Vpmagpol126.gif

Рис. 4. Распространение волны тока и напряжения в длинной линии.

Именно на этом переходном участке и происходит ускорение зарядов от нулевой скорости в его начале, до значений необходимых для создания номинального тока в линии, величина которого определяется соотношением Файл:Vpmagpol122.gif. К этому участку и приложено напряжение источника питания. В данном случае принято, что во время переходного процесса напряжение нарастает по линейному закону (хотя в общем случае оно может нарастать по любому другому закону). Принято также, что время этого переходного процесса значительно меньше, чем время, за которое фронт напряжения пробегает по линии в одну сторону. Интервал Файл:Vpmagpol124.gif соответствует переходному процессу, который связан с инерционными свойствами устройства, подключающего источник напряжения к линии. Предполагается, что Файл:Vpmagpol119.gif>>Файл:Vpmagpol124.gif.

В момент, когда на перемычке, закорачивающей длинную линию, на которой выполняется граничное условие Файл:Vpmagpol128.gif, появляется фронт напряжения Файл:Vpmagpol123.gif, возникает отраженная волна с напряжением Файл:Vpmagpol129.gif, бегущая в обратном направлении. Так как ток в этой отраженной волне равен напряжению с отрицательным знаком и двигается она в обратном направлении, то суммарный ток, создаваемый этой волной будет равен Файл:Vpmagpol130.gif, т.е. он будет течь в том же направлении, что и ток падающей волны. Таким образом, отраженная волна, двигаясь в обратном направлении, будет оставлять после себя ток, равный Файл:Vpmagpol131.gif, и нулевое напряжение. Когда фронт напряжения возвратиться к началу линии, он принесет с собой состояние удвоенного начального тока и нулевое напряжение. Источник снова пошлет в линию фронт напряжения Файл:Vpmagpol123.gif и ток Файл:Vpmagpol132.gif. Этот ток сложится с током Файл:Vpmagpol131.gif, и суммарный ток в линии составит Файл:Vpmagpol133.gif. Ток и далее будет нарастать ступеньками, добавляя каждый очередной раз к своему прежнему значению величину Файл:Vpmagpol131.gif. Если этот процесс отобразить во времени, то он будет выглядеть, как показано на рис. 5. На этом рисунке время Файл:Vpmagpol134.gif равно времени, за которое фронт напряжения пробегает по линии в одну сторону от её начала до закороченного участка.

Особенностью такого процесса является то, что отбор энергии от источника напряжения не будет подчиняться линейному закону, а будет иметь скачкообразный характер. Мощность, отбираемая на интервале времени от нуля до Файл:Vpmagpol135.gif, будет составлять Файл:Vpmagpol136.gif. Но на каждом последующем интервале времени, равном Файл:Vpmagpol135.gif, она будет возрастать уже на величину Файл:Vpmagpol137.gif.

Таким образом, нарастание тока носит вовсе не линейный, а скачкообразный характер, и он тем более выражен, чем больше длина линии. Указанный процесс имеет место при любой длине линии. При малой длине линии скачки следуют через малые промежутки времени и зависимость тока от времени приближенно можно считать линейной, что и характерно для элементов с сосредоточенными параметрами.

Следует обратить внимание на то, что, мощность, отбираемая закороченной линией у источника напряжения (рис. 4), не является линейной функцией, а по истечении времени равному Файл:Vpmagpol135.gifскачком увеличивается на Файл:Vpmagpol138.gif, причем первый скачек соответствует отбираемой мощности Файл:Vpmagpol139.gif.

Файл:Vpmagpol140.gif

Рис. 5. График зависимости входного тока от времени для закороченной линии.

Нетрудно показать, что магнитный поток в данном случае изменяется по линейному закону (рис. 6). Действительно, во время прямого хода, до момента достижения волной закороченного участка, поток будет увеличиваться по линейному закону, и к моменту Файл:Vpmagpol141.gif достигнет величины Файл:Vpmagpol142.gif.

Когда, отразившись от закороченного участка, фронт напряжения начнет двигаться в обратном направлении, то поток будет продолжать возрастать по линейному закону, и к моменту прихода фронта напряжения обратно к источнику напряжения достигнет величины Файл:Vpmagpol143.gif. Таким образом, при подключении закороченной линии к источнику напряжения выполняется закон индукции Файл:Vpmagpol144.gif.

Файл:Vpmagpol145.gif

Рис. 6. Зависимость магнитного потока от времени для закороченной линии.

Электрический поток в линии тоже будет изменяться, но по другому закону (рис. 7).

Файл:Vpmagpol146.gif

Рис. 7. Зависимость электрического потока от времени для закороченной линии.

В отличие от магнитного потока он будет изменяться периодически, то, возрастая, то, убывая, по линейному закону. Когда волна движется в положительном направлении, одновременно возрастает и магнитный и электрический поток. При этом, как в магнитном, так и в электрическом поле накопленная энергия возрастает. Когда волна начинает двигаться в обратном направлении, то электрическое поле начинает исчезать, а его энергия переходит в магнитную энергию обратной волны тока. После того, как фронт волны напряжения достигает входа линии, магнитное поле и ток в ней удваивается, а электрическое поле исчезает. Далее цикл повторяется. Следовательно, процессу возрастания магнитного потока в индуктивности закороченной длинной линия, в обязательном порядке сопутствует процесс периодического изменения потока электрической индукции, в результате чего между плоскостями линии периодически возникает и исчезает электрическое поле.

Допустим, что линия выполнена из сверхпроводника и не имеет потерь. Тогда заменив в определённый момент генератор напряжения сверхпроводящей перемычкой, можно заморозить ток в линии. Наиболее благоприятным моментом для такой процедуры является момент, когда в линии полностью отсутствует электрическое поле. Тогда в линии будет заморожен поток Файл:Vpmagpol147.gif, которому будет соответствовать ток Файл:Vpmagpol148.gif. Что будет, если замену источника напряжения сверхпроводящей перемычкой произвести в тот момент времени, когда в линии находится фронт напряжения и какой-то её участок заполнен электрическими полями? В этом случае этот участок будет двигаться в линии, попеременно отражаясь то от одного, то от другого конца закороченной линии, пока не истратит свою энергию на излучение. По этой причине в закороченной с обеих сторон линии может быть заморожено только целочисленное (квантованное) значение потока и тока в соответствии с приведенными соотношениями.

Это явление является примером макроскопического квантования потока в макроскопических структурах, имеющих определённые размеры. Такое же квантование потока происходит и в микроскопических структурах, которыми являются атомы. С точки зрения цепей с сосредоточенными параметрами, нарастание тока в соленоиде при подключении к нему источника напряжения происходит по линейному закону, причём во всех его витках одновременно. Но так ли это? Для выяснения этого вопроса заменим верхнюю плоскость рассмотренной двухпроводной линии (рис. 8) длинным соленоидом. Если к такой линии подключить источник напряжения, то процесс нарастания тока в ней ничем не будет отличаться от рассмотренного. Погонная индуктивность линии будет теперь в основном определяться погонной индуктивностью соленоида и скорость распространения и волны тока, и волны напряжения (напряжение теперь будет приложено между соленоидом и нижним проводником линии) будет меньше, чем в предыдущем случае.

Когда в рассмотренной линии волна дойдет до точки с координатой Файл:Vpmagpol149.gif, то магнитным полем будет заполнена только часть соленоида, расположенная между источником питания и точкой Файл:Vpmagpol149.gif. Когда волна дойдет до его конца, то магнитным полем будет заполнен весь соленоид. При обратном ходе волны магнитное поле в соленоиде удвоится, и процесс начнется сначала. Таким образом, внутренний магнитный поток в любом поперечном сечении соленоида будет нарастать не плавно, а скачками, и период этих скачков будет определяться временем прохождения волной данного закороченного отрезка соленоида.

Файл:Vpmagpol150.gif

Рис. 8. Схема распространения магнитных и электрических полей в длинном соленоиде.

Положим теперь, что соленоид в определенном месте охвачен витком.

Этот процесс подобен механическому одеванию охватывающего витка на конец соленоида с той лишь разницей, что в данном случае магнитный поток, перемещаясь внутри соленоида, сам пронизывает охватывающий его виток. Причём скорость движения фронта магнитного потока при этом несоизмеримо больше, чем при механическом одевании. Но оба процесса имеют одинаковую природу. Этими процессами и объясняется явление взаимной индукции между соленоидом и охватывающим витком. При небольшой длине соленоида расстояние между импульсами невелико, поэтому они, сливаясь, образуют почти постоянное напряжение. Напряжение в витке будет индуцироваться только в момент пересечения магнитным потоком соленоида окрестностей поперечного сечения, охваченного витком. В этот момент в окрестностях охватывающего витка будет возникать, как векторный потенциал, так и магнитное поле. И, именно, пересечение охватывающего витка магнитными полями рассеяния (такого же, как и на конце соленоида с постоянным током) приводит к индуцированию в нём э.д.с. Этот момент будет наступать как при прямом, так и при обратном ходе волны, причем полярность импульсов напряжения, индуцируемых в витке, в обоих случаях будет одна и та же. Частота этих импульсов будет зависеть от длины соленоида, и будет тем больше, чем короче соленоид. Следовательно, среднее значение индуцированного напряжения будет расти с уменьшением длины соленоида, т.е. его количества витков, что и определяет коэффициент трансформации такого трансформатора, который равен отношению количества витков соленоида и охватывающей обмотки.

Рассмотрев процесс нарастания токов и полей в длинном соленоиде, вернёмся к вопросу о наличии циркуляции векторного потенциала вокруг длинного соленоида. Приведём существующую точку зрения по этому вопросу, представленную в работе [1]. Значение векторного потенциала в пространстве, окружающем соленоид, находится из соотношения

Файл:Vpmagpol151.gif

(2.6)

где Файл:Vpmagpol152.gif - количество витков, приходящееся на единицу длины соленоида, Файл:Vpmagpol002.gif - ток, текущий через соленоид, Файл:Vpmagpol153.gif - диаметр соленоида, Файл:Vpmagpol100.gif - расстояние от оси соленоида до точки наблюдения.

При записи этого соотношения предполагается, что Файл:Vpmagpol154.gif.

Индуктивность соленоида определяется выражением

Файл:Vpmagpol155.gif

(2.7)

где Файл:Vpmagpol156.gif - длина соленоида.

Если к соленоиду подключить источник постоянного напряжения Файл:Vpmagpol116.gif, то с учётом соотношений (2.5 -2.7), получаем

Файл:Vpmagpol157.gif

где Файл:Vpmagpol158.gif - общее число витков в соленоиде, а поскольку

Файл:Vpmagpol159.gif

то напряжённость электрического поля в окрестности соленоида в момент подключения к нему источника постоянного напряжения составит

Файл:Vpmagpol160.gif

Указанная напряжённость электрического поля в соответствии с рассматриваемой версией возникает в момент подключения к соленоиду источника питания мгновенно на всём его протяжении. Если у соленоида отсутствует сопротивление, то напряжённость электрического поля будет неизменной за весь период времени подключения к соленоиду источника постоянного напряжения. Какие здесь возникают противоречия? Во-первых, электрические поля обладают энергией, и возникать мгновенно не могут. Второе противоречие вытекает из первого и заключается в том, что, поскольку электрические поля обладают энергией, то эта энергия должна включаться в общую энергию, накопленную в соленоиде. Но при расчёте такой энергии учитываются только магнитные поля внутри соленоида.

Таким образом, сам процесс индукции электрических полей вокруг длинного соленоида происходит совсем не так, как это представлено в существующей литературе [1], когда считается, что циркуляция магнитного векторного потенциала на всём его протяжении возрастает одновременно, что и приводит к индукции э.д.с. в охватывающем витке.

Из сказанного можно заключить, что точка зрения о возникновении электрических полей индукции вокруг соленоида в том месте, где ротор векторного потенциала равен нулю, не соответствует действительности, а сам процесс формирования векторного потенциала снаружи соленоида и магнитных полей внутри него не соответствует тем представлениям, которые существуют на сегодняшний день. Ротор векторного потенциала снаружи соленоида равен нулю, и такое поле не обладает никакой энергией, поэтому и обнаружить его в статическом режиме не представляется возможным. По этой причине эксперименты Аронова и Бома по обнаружению векторного потенциала снаружи длинного соленоида, в качестве которого использовался намагниченный ферромагнитный цилиндрический образец малого диаметра, следует считать ошибочными.

Рассмотрим диаграмму распространения тока и напряжения в отрезке длинной линии, представленной на рис. 4. На этом рисунке сам фронт волны показан скошенным и занимает отрезок линии длинной Файл:Vpmagpol124.gif, следовательно, время такого переходного процесса равно Файл:Vpmagpol161.gif. Это как раз то время, за которое напряжение на входе линии вырастает от нуля до своего номинального значения. Длительность данного переходного процесса является регулируемой, и зависит от того, по какому закону мы увеличиваем напряжение на входе линии, Сейчас мы попытаемся понять, откуда берется та напряженность поля, которая заставляет заряды в проводниках, расположенных вблизи токонесущих элементов линии, двигаться в направлении противоположном направлению движения зарядов в первичной (индуцирующей) линии. Это как раз тот вопрос, на который до сих пор нет физического ответа. Предположим, что напряжение на входе линии возрастает по линейному закону и за время Файл:Vpmagpol162.gif достигает своего максимального значения Файл:Vpmagpol123.gif, после чего его рост прекращается. Тогда в самой линии переходной процесс займет участок Файл:Vpmagpol163.gif. Изобразим этот участок отдельно, как показано на рис. 9.

Файл:Vpmagpol164.gif

Рис. 9. Фронт волны тока, распространяющейся в длинной линии

На участке Файл:Vpmagpol149.gif происходит ускорение зарядов от их нулевой скорости (правее участка Файл:Vpmagpol149.gif) до значения скорости, определяемого соотношением

Файл:Vpmagpol165.gif

где Файл:Vpmagpol028.gif и Файл:Vpmagpol166.gif - заряд и масса носителей тока, а Файл:Vpmagpol116.gif - падение напряжения на участке Файл:Vpmagpol149.gif. Тогда зависимость скорости носителей тока от координаты будет иметь вид:

Файл:Vpmagpol167.gif

(2.8)

Поскольку мы приняли линейную зависимость напряжения от времени на входе линии, то имеет место равенство

Файл:Vpmagpol168.gif

где Файл:Vpmagpol169.gif - напряженность поля, ускоряющая заряды на участке Файл:Vpmagpol149.gif. Следовательно, соотношение (2.8) мы можем переписать

Файл:Vpmagpol170.gif

Теперь, используя соотношение (2.4) для величины скалярно-векторного потенциала, вычислим его значение как функцию Файл:Vpmagpol069.gif на некотором расстоянии Файл:Vpmagpol100.gifот линии

Файл:Vpmagpol171.gif

(2.9)

При записи соотношения (2.9) использованы только первые два члена разложения в ряд, функции, определяемой соотношением (2.4).

Пользуясь формулой Файл:Vpmagpol172.gif, и продифференцировав соотношение (2.9) по Файл:Vpmagpol069.gif, получаем

Файл:Vpmagpol173.gif

(2.10)

где Файл:Vpmagpol174.gif- электрическое поле, индуцируемое на расстоянии Файл:Vpmagpol069.gifот проводника линии. Около Файл:Vpmagpol101.gif мы поставили штрих в связи с тем, что вычисленное поле движется вдоль проводника линии со скоростью света, индуцируя в окружающих линию проводниках индукционные токи, противоположные по направлению тем, которые текут в индуцирующей линии. Ускорение Файл:Vpmagpol175.gif, испытуемое зарядом Файл:Vpmagpol028.gif в поле Файл:Vpmagpol101.gif, определяется соотношением Файл:Vpmagpol176.gif. С учетом этого из (2.10) получаем

Файл:Vpmagpol177.gif

(2.11)

Таким образом, заряды, ускоряемые в отрезке линии Файл:Vpmagpol119.gif, индуцируют на расстоянии Файл:Vpmagpol100.gifот этого участка электрическое поле, определяемое соотношением (2.11). Направление этого поля обратно полю, приложенного к ускоряемым зарядам. Таким образом, получен закон прямого действия, который указывает на то, какие электрические поля вокруг себя генерирует ускоряемый заряд. Этот закон можно называть законом электро-электрической индукции, так как он, минуя поля посредники (магнитное поле или векторный потенциал), дает прямой ответ на то, какие электрические поля генерирует вокруг себя ускоряемый электрический заряд. Данный закон дает также ответ о месте приложения сил взаимодействия между зарядами. Именно это соотношение, а не закон Фарадея, мы должны считать основным законом индукции, т.к. именно оно устанавливает причину появления индукционных электрических полей вокруг движущегося заряда. В чем заключается разница между предлагаемым подходом и ранее существующим. Ранее говорилось, что движущийся заряд генерирует векторный потенциал, а уже изменяющийся векторный потенциал генерирует электрическое поле. Соотношение (2.11) дает возможность исключить эту промежуточную операцию и перейти непосредственно от свойств движущегося заряда к индукционным полям. Из соотношению (2.11) следует и введенный ранее феноменологическим путем векторный потенциал, а, следовательно, и магнитное поле. Равенство (2.11) можно переписать

Файл:Vpmagpol178.gif

откуда, интегрируя по времени, получаем

Файл:Vpmagpol179.gif

Это соотношение полностью соответствует определению векторного потенциала. Теперь видно, что векторный потенциал есть прямое следствие зависимости скалярного потенциала от скорости. Введение и векторного потенциала и магнитного поля это всего лишь полезный математический приём, который позволяет упростить решение ряда электродинамических задач, однако, следует помнить, что первоосновой введение этих полей является скалярно-векторный потенциал.

Новые подходы к вопросу силового взаимодействия токонесущих систем

Но векторный потенциал определяет не только электрические поля, индуцируемые ускоряемыми электрическими зарядами, но и силовое взаимодействие проводников, по которым текут токи, а также силовое взаимодействие движущихся зарядов с такими проводниками.

С точки зрения существующей теории электромагнетизма силы взаимодействия проводников можно найти двумя путями.

Первый из них заключается в том, что один из проводников (например, нижний) создает в месте расположения верхнего проводника магнитное поле H(r), которое определяется соотношением

Файл:Vpmagpol180.gif


Файл:Vpmagpol181.gif


Рис. 10. Схема силового взаимодействия токонесущих проводов двухпроводной линии на основе существующей модели.


В системе координат, двигающейся вместе с зарядами верхнего проводника, возникает поле Файл:Vpmagpol182.gif, определяемое соотношением

Файл:Vpmagpol183.gif

т.е. заряды, двигающиеся в верхнем проводнике, испытывают действие силы Лоренца. Значение этой силы, приходящейся на единицу длины проводника, записывается как:

Файл:Vpmagpol184.gif

Это соотношение можно получить и другим путем. Можно считать, что нижний проводник создает в районе расположения верхней проволоки векторный потенциал, z – компонента которого запишется

Файл:Vpmagpol185.gif

Потенциальная энергия единичного участка верхнего проводника, по которому течет ток Файл:Vpmagpol186.gif, в поле векторного потенциала Файл:Vpmagpol187.gif определятся соотношением

Файл:Vpmagpol188.gif

Поскольку сила определяется как производная потенциальной энергии по координате, взятая с обратным знаком, то она запишется

Файл:Vpmagpol189.gif

Оба рассмотрения показывают, что сила взаимодействия двух проводников возникает как результат взаимодействия движущихся зарядов, т.к. одни из них создают поля, а другие с этими полями взаимодействуют. Неподвижные заряды, представляющие решетку, в такой схеме взаимодействия участия не принимают. Однако, силы, возникающие при магнитном взаимодействии проводников, приложены именно к решетке. Вопрос о том, каким образом движущиеся заряды передают приложенные к ним силы решетке, в классической электродинамике не рассматривается.

Отметим также, что рассмотренные схемы взаимодействия заключают в себе одно неразрешимое противоречие, которое специалисты по классической электродинамике обычно умалчивают. Оно связано с нахождением сил взаимодействия между двумя параллельно движущимися зарядами. С точки зрения рассмотренных схем, между такими двумя зарядами должно существовать притяжение. Действительно, индукция В, создаваемая движущимся зарядом Файл:Vpmagpol190.gif на расстоянии r от него, записывается

Файл:Vpmagpol191.gif

Если имеется другой заряд g2, двигающийся с той же скоростью V, что и первый и в том же направлении на расстоянии r от первого заряда, то за счет наличия в этой точке индукции Файл:Vpmagpol192.gif на него будет действовать сила притяжения к первому заряду

Файл:Vpmagpol193.gif

Т.е. с точки зрения неподвижного наблюдателя такие заряды, кроме наличия сил кулоновского отталкивания должны дополнительно притягиваться. С точки же зрения наблюдателя, двигающегося вместе с зарядами, имеется только кулоновское отталкивание и никаких дополнительных сил притяжения нет. Отметим, что данное противоречие неразрешимо не только в рамках классической электродинамики, но и в рамках специальной теории относительности.

С физической точки зрения введение магнитных полей есть просто констатация определенных экспериментальных фактов, однако, мы до сих пор не понимаем, откуда эти поля берутся.

Концепция магнитного поля возникла в значительной степени благодаря наблюдениям за силовым взаимодействием токонесущих и намагниченных систем. Особенно показательным является опыт с железными опилками, которые выстраиваются около полюсов магнита или вокруг кольцевого витка с током в чёткие геометрические фигуры. Эти фигуры и послужили поводом для введения такого понятия, как силовые линии. При любом силовом взаимодействии, в соответствии с третьим законом Ньютона, всегда существует равенство сил действия и противодействия, а также всегда имеются те элементы системы, к которым эти силы приложены. Большим недостатком концепции магнитного поля является то, что она не даёт ответа на то, куда конкретно приложены силы действия и противодействия, т.к. магнитное поле выступает как самостоятельная субстанция, с которой и происходит взаимодействие движущихся зарядов.

Экспериментально известно, что силы взаимодействия в токонесущих системах приложены к тем проводникам, движущиеся заряды которых создают магнитное поле. Однако в существующей концепции силового взаимодействия токонесущих систем, основанной на понятиях магнитного поля и силы Лоренца, положительно заряженная решетка, которая является остовом проводника и к которой приложены силы, не участвует в формировании сил взаимодействия. То, что положительно заряженные ионы принимают непосредственное участие в силовых процессах, говорит уже, хотя бы, тот факт, что в процессе сжатия плазмы, при протекании через нее постоянного тока происходит сжатие и ионов (так называемый пинч-эффект).

Рассмотрим этот вопрос на основе концепции скалярно-векторного потенциала. Будем считать, что скалярно-векторный потенциал одиночного заряда определяется соотношением (2.4), и что электрические поля, создаваемые этим потенциалом, действуют на все окружающие заряды, в том числе и на заряды положительно заряженной решетки.


Разберем с этих позиций силовое взаимодействие между двумя параллельными проводниками (рис. 11), по которым протекают токи. Будем считать, что Файл:Vpmagpol194.gif, Файл:Vpmagpol195.gif и Файл:Vpmagpol196.gif, Файл:Vpmagpol197.gif представляют соответственно неподвижные и движущиеся заряды, приходящиеся на единицу длины проводника.

Файл:Vpmagpol198.gif

Рис. 11. Схема силового взаимодействия токонесущих проводов двухпроводной линии с учетом положительно заряженной решетки.


Заряды Файл:Vpmagpol194.gif, Файл:Vpmagpol195.gif представляют положительно заряженную решетку в нижнем и верхнем проводниках. Будем также считать, что оба проводника до начала движения зарядов являются электронейтральными, т.е. в проводниках имеется две системы взаимно вложенных разноименных зарядов с удельной плотностью на Файл:Vpmagpol194.gif, Файл:Vpmagpol196.gif и Файл:Vpmagpol195.gif, Файл:Vpmagpol197.gif, которые электрически нейтрализуют друг друга. На рис. 11 эти системы для большего удобства рассмотрения сил взаимодействия раздвинуты по оси z. Подсистемы с отрицательным зарядом (электроны) могут двигаться со скоростями Файл:Vpmagpol199.gif и Файл:Vpmagpol200.gif. Силу взаимодействия между нижним и верхним проводниками будем искать как сумму четырех сил, обозначение которых понятно из рисунка. Силы отталкивания Файл:Vpmagpol201.gif и Файл:Vpmagpol202.gif будем брать со знаком минус, а силы притяжения Файл:Vpmagpol203.gif и Файл:Vpmagpol204.gif будем брать со знаком плюс.

Для единичного участка двухпроводной линии силы, действующие между отдельными подсистемами, запишутся

Файл:Vpmagpol205.gif

(3.1)

Складывая все силы, получим величину суммарной силы, приходящейся на единицу длины проводника,

Файл:Vpmagpol206.gif

(3.2)

В данном выражении в качестве Файл:Vpmagpol207.gif и Файл:Vpmagpol208.gif взяты абсолютные величины зарядов, а знаки сил учтены в выражении в скобках. Для случая Файл:Vpmagpol209.gif << Файл:Vpmagpol210.gif, возьмем только два первых члена разложения в ряд Файл:Vpmagpol211.gif, т.е. будем считать, что Файл:Vpmagpol212.gif. Из соотношения (20.2) получаем

Файл:Vpmagpol213.gif

(3.3)

где в качестве Файл:Vpmagpol207.gif и Файл:Vpmagpol208.gif взяты абсолютные величины удельных зарядов, а Файл:Vpmagpol199.gif и Файл:Vpmagpol200.gif берут со своими знаками.

Поскольку магнитное поле прямого провода, по которому течёт ток Файл:Vpmagpol002.gif, определяем соотношением

Файл:Vpmagpol214.gif

то из соотношения (3.3) получаем:

Файл:Vpmagpol215.gif

где Файл:Vpmagpol216.gif - магнитное поле создаваемое нижним проводником, по которому течёт ток Файл:Vpmagpol217.gif, в месте расположения верхнего проводника.

Аналогично

Файл:Vpmagpol218.gif

где Файл:Vpmagpol219.gif - магнитное поле, создаваемое верхним проводником в районе расположения нижнего проводника.

Эти соотношения полностью совпадают с результатами, полученными на основании концепции магнитного поля.

Соотношение (3.3) представляет известное правило силового взаимодействия токонесущих систем, но получено оно не феноменологическим путем на основании введения феноменологического магнитного поля, а на основе вполне понятных физических процедур, в предположении того, что скалярный потенциал заряда зависит от скорости. В формировании сил взаимодействия в данном случае непосредственное участие принимает решетка, чего нет в модели магнитного поля. В рассмотренной модели хорошо видны места приложения сил. Полученные соотношения совпадают с результатами, полученными на основе концепции магнитного поля и аксиоматически введённой силой Лоренца. В данном случае взят только первый член разложения в ряд Файл:Vpmagpol211.gif. Для скоростей Файл:Vpmagpol209.gif ~ Файл:Vpmagpol210.gif следует брать все члены разложения. Этим предлагаемый метод отличается от метода расчёта силовых взаимодействий на основе концепции магнитного поля. Если учесть это обстоятельство, то связь между силами взаимодействия и скоростями зарядов оказывается нелинейной. Это, в частности приводит к тому, что закон силового взаимодействия токонесущих систем является асимметричным. При одинаковых значениях токов, но при разных их направлениях, силы притяжения и отталкивания становятся неодинаковыми. Силы отталкивания оказываются большими, чем силы притяжения. Эта разница невелика и определяется выражением

Файл:Vpmagpol220.gif

но при скоростях носителей зарядов близких к скорости света она может оказаться вполне ощутимой.

Уберем решетку верхнего проводника (рис. 11), оставив только свободный электронный поток. При этом исчезнут силы Файл:Vpmagpol201.gif и Файл:Vpmagpol203.gif, и это будет означать взаимодействие нижнего проводника с потоком свободных электронов, движущихся со скоростью Файл:Vpmagpol200.gif на месте расположения верхнего проводника. При этом значение силы взаимодействия определяется как:

Файл:Vpmagpol221.gif

(3.4)

Сила Лоренца предполагает линейную зависимость между силой, действующей на заряд, движущийся в магнитном поле, и его скоростью. Однако в полученном соотношении зависимость величины силы от скорости электронного потока будет нелинейной. Из соотношения (3.4) нетрудно видеть, что с ростом Файл:Vpmagpol200.gif отклонение от линейного закона увеличивается, и в случае, когда Файл:Vpmagpol200.gif >> Файл:Vpmagpol199.gif, сила взаимодействия стремятся к нулю. Это очень важный результат. Именно этот феномен и наблюдали в своих известных экспериментах Томпсон и Кауфман, когда заметили, что с ростом скорости электронного пучка он хуже отклоняется магнитным полем. Результаты своих наблюдений они связали с ростом массы электрона. Как видим причина здесь другая.

Отметим ещё один интересный результат. Из соотношения (3.3), с точностью до квадратичных членов, сила взаимодействия электронного потока с прямолинейным проводником, по которому протекает ток, можно определить по следующей зависимости:

Файл:Vpmagpol222.gif

(3.5)

Из выражения (3.5) следует, что при однонаправленном движении электронов в проводнике и в электронном потоке сила взаимодействия при выполнении условия Файл:Vpmagpol223.gif отсутствует.

Поскольку скорость электронного потока обычно гораздо выше скорости носителей тока в проводнике, то вторым членом в скобках в соотношении (3.5) можно пренебречь. Тогда, поскольку

Файл:Vpmagpol224.gif

магнитное поле, создаваемое нижним проводником в месте движения электронного потока, получим:

Файл:Vpmagpol225.gif

В данном случае, полученное значение силы в точности совпадает со значением силы Лоренца.

Учитывая, что

Файл:Vpmagpol226.gif

можно считать, что на заряд, движущийся в магнитном поле, действует электрическое поле Файл:Vpmagpol101.gif, направленное нормально к направлению движения заряда. Данный результат также с точностью до квадратичных членов Файл:Vpmagpol227.gif полностью совпадает с результатами концепции магнитного поля и определяет силу Лоренца, действующую со стороны магнитного поля на поток движущихся электронов.

Как уже было сказано, одним из важных противоречий концепции магнитного поля является то, что два параллельных пучка одноименных зарядов, двигающихся с одинаковой скоростью в одном направлении, должны притягиваться. В данной модели этого противоречия уже нет. Если считать, что скорости зарядов в верхнем и нижнем проводе будут равны, а решетка отсутствует, т.е. оставить только электронные потоки, то останется только сила отталкивания Файл:Vpmagpol202.gif независимо от того движутся заряды или нет.

Таким образом, движущийся электронный поток взаимодействует одновременно и с движущимися электронами в нижней проволоке, и с её решеткой, а сумма этих сил взаимодействия и называется силой Лоренца. Эта сила и действует на движущийся поток электронов.

Закономерно возникает вопрос, а создаёт ли магнитное поле сам движущийся поток электронов в отсутствии компенсирующих зарядов решетки или положительных ионов в плазме? Рассмотренная схема показывает, что эффект силового взаимодействия между токонесущими системами требует в обязательном порядке наличия положительно заряженной решетки. Поэтому сам движущийся электронный поток не может создавать того эффекта, который создаётся при его движении в положительно заряженной решетке. В то же время, если рассмотреть два параллельно движущихся потока электронов, то возникает дополнительная сила взаимодействия, зависящая от относительной скорости этих потоков.

Продемонстрируем ещё один подход к проблеме силового взаимодействия токонесущих систем. Констатация факта наличия сил между токонесущими системами указывает на то, что существует какое-то поле скалярного потенциала, градиент которого и обеспечивает указанную силу. Но что это за поле? Соотношение (3.3) даёт только значение силы, но не говорит о том, градиент какого скалярного потенциала эти силы обеспечивает. Будем поддерживать постоянными токи Файл:Vpmagpol217.gif и Файл:Vpmagpol228.gif, и начнём сближать или удалять проводники. Работа, которая при этом будет затрачена, и есть тот потенциал, градиент которого даёт силу. Проинтегрировав соотношение (3.3) по Файл:Vpmagpol100.gif, получаем величину энергии:

Файл:Vpmagpol229.gif

Эта энергия, в зависимости от того удалять проводники друг от друга, или сближать, может быть положительной или отрицательной. Когда проводники удаляют, то энергия положительна, а это означает, что, поддерживая ток в проводниках постоянным, генератор отдаёт энергию. Это явление и лежит в основе работы всех электродвигателей. Если проводники сближаются, то работу совершают внешние силы, над источником, поддерживающим в них постоянство токов. Это явление лежит в основе работы механических генераторов э.д.с.

Соотношение для энергии можно переписать и так:

Файл:Vpmagpol230.gif

где

Файл:Vpmagpol231.gif

есть Файл:Vpmagpol069.gif- компонента векторного потенциала, создаваемая нижним проводником в месте расположения верхнего проводника, а

Файл:Vpmagpol232.gif

есть Файл:Vpmagpol069.gif- компонента векторного потенциала, создаваемая верхним проводником в месте расположения нижнего проводника.

Рассмотренный подход демонстрирует ту большую роль, которую играет векторный потенциал в вопросах силового взаимодействия токонесущих систем и преобразования электрической энергии в механическую. Такой подход также ясно указывает на то, что сила Лоренца есть следствие взаимодействия токонесущих систем с полем векторного потенциала, создаваемого другими токонесущими системами. И важным обстоятельством является то, что формирование векторного потенциала обязано зависимости скалярного потенциала от скорости. С физической точки зрения это ясно. Движущиеся заряды, в связи с наличием зависимости их скалярного потенциала от скорости, создают скалярное поле, градиент которого и даёт силу. Но создание любого силового поля требует затрат энергии. Эти затраты и совершает генератор, создавая токи в проводниках. При этом в окружающем пространстве создаётся особое поле, которое взаимодействует с другими движущимися зарядами по особым векторным правилам, при которых только скалярное произведение вектора скорости заряда и векторного потенциала даёт потенциал, градиент которого и даёт силу, действующую на движущийся заряд. Это и есть сила Лоренца.

Несмотря на простоту и очевидность такого подхода, этот простой механизм до настоящего времени не был окончательно осознан. По этой причине сила Лоренца до сих пор вводилась в классической электродинамике аксиоматическим путём.

Рассмотрим ещё один случай, когда одиночный отрицательный заряд Файл:Vpmagpol028.gif движется со скоростью Файл:Vpmagpol200.gif параллельно проводнику, по которому со скоростью Файл:Vpmagpol199.gif двигаются электроны, удельная плотность которых, приходящаяся на единицу длины провода, составляет Файл:Vpmagpol233.gif (рис.12). Будем считать, что проводник до начала движения электронов был электронейтральным и удельная плотность положительных ионов и электронов были равны. Элемент заряда, приходящийся на отрезок Файл:Vpmagpol234.gif проводника с током, при этом составит Файл:Vpmagpol235.gif. Элемент силы действия движущегося заряда Файл:Vpmagpol028.gif на элемент Файл:Vpmagpol235.gif определится соотношением:

Файл:Vpmagpol236.gif

где Файл:Vpmagpol237.gif и Файл:Vpmagpol238.gif - компоненты соответствующих скоростей, нормальные к радиусу, соединяющему движущийся заряд с элементом заряда Файл:Vpmagpol235.gif.

Поскольку Файл:Vpmagpol239.gif и Файл:Vpmagpol240.gif, а также, учитывая, что Файл:Vpmagpol241.gif и Файл:Vpmagpol242.gif, можно записать:

Файл:Vpmagpol243.gif

Файл:Vpmagpol244.gif

Рис. 12. Схема взаимодействия движущегося точечного заряда с проводником, по которому течёт ток.

Полученная сила - это сила притяжения. Элемент этой силы, параллельной , запишется как:

Файл:Vpmagpol245.gif

(3.6)

а элемент силы, нормальной к Файл:Vpmagpol153.gif - как:

Файл:Vpmagpol246.gif

(3.7)

Проинтегрировав соотношение (3.6) и учитывая, что ток, текущий по нижнему проводнику определяется соотношением Файл:Vpmagpol247.gif, запишем силу, действующую на одиночный движущийся заряд Файл:Vpmagpol028.gif со стороны правой части проволоки:

Файл:Vpmagpol248.gif

(3.8)

Если учесть также взаимодействие с левой её частью проволоки, то сила, действующая параллельно Файл:Vpmagpol153.gif и определяемая соотношением (3.8), удвоится, а силы, действующие по нормали к Файл:Vpmagpol153.gif, компенсируются. Таким образом, суммарная сила, действующая на заряд, движущийся параллельно проволоке, запишется:

Файл:Vpmagpol249.gif

(3.9)

Поскольку магнитное поле, создаваемое нижним проводником с током в точке нахождения движущегося заряда, определяется соотношением Файл:Vpmagpol250.gif

а магнитная проницаемость Файл:Vpmagpol251.gif, то из соотношения (3.8) получаем Файл:Vpmagpol252.gif

Эта сила в точности равна силе Лоренца.

Теперь рассмотрим случай, когда заряд движется между двумя безграничными параллельными пластинами, по которым протекает удельный ток Файл:Vpmagpol002.gif, приходящийся на единицу ширины пластин (рис. 13). Этот ток течёт по нормали к плоскости рисунка. При этом заряд движется параллельно току, протекающему в пластинах.

Файл:Vpmagpol253.gif

Рис.13. Схема взаимодействия движущегося точечного заряда с токами, текущими по параллельным проводящим пластинам.

Учитывая соотношение (3.9), запишем элемент силы, действующей на движущийся заряд со стороны элемента тока, текущего нормально к элементу Файл:Vpmagpol254.gif

Файл:Скалвек пот и сил вз090.gif

(3.10)

В этом соотношении Файл:Vpmagpol234.gif это толщина слоя, по которому течёт ток, а Файл:Vpmagpol152.gif - плотность электронов.

Перепишем соотношение (3.10), учитывая что Файл:Vpmagpol256.gif, Файл:Vpmagpol257.gif, а также то, что Файл:Vpmagpol258.gif, где Файл:Vpmagpol259.gif - элемент силы, направленный параллельно Файл:Vpmagpol100.gif, а Файл:Vpmagpol260.gif - элемент силы, направленный нормально к Файл:Vpmagpol153.gif:

Файл:Скалвек пот и сил вз097.gif

Проинтегрировав это выражение, получим полную силу, действующую на движущийся заряд со стороны одной полуплоскости:

Файл:Скалвек пот и сил вз098.gif

Учитывая, что в случае, когда элемент Файл:Vpmagpol234.gif равен единичной длине, выполняется соотношение Файл:Vpmagpol263.gif, а также то, что на заряд действуют силы со стороны четырёх полуплоскостей (две со стороны нижней пластины и две со стороны верхней), окончательно получаем:

Файл:Скалвек пот и сил вз100.gif

И опять конечный результат в точности совпал с результатами концепции магнитного поля.

Таким образом, результаты, полученные с учётом введения скалярно-векторного потенциала и концепции магнитного поля, полностью совпадают, если учитывать только квадратичные члены разложения гиперболического косинуса в ряд. В случае учёта членов разложения более высоких порядков, когда скорости движения зарядов велики, такого совпадения не будет и связь между силой и скоростью становится нелинейной, и концепция магнитного поля уже не даст правильных результатов.

Достоинством данного метода рассмотрения взаимодействия между токонесущими системами и зарядами является то, что он указывает на конкретные места приложения сил, действующих между их элементами и движущимися зарядами, чего нет в концепции магнитного поля. Рассмотренный подход даёт возможность определить силы взаимодействия между любыми токонесущими системами при любой их конфигурации, и показывает, что такие понятия, как магнитный векторный потенциал и магнитное поле для стационарных процессов это следствие зависимости скалярного потенциала заряда от скорости его движения. В случае же нестационарных процессов, когда возникает ускорение заряда, при решении задачи следует учитывать эффекты запаздывания.

Список Литературы

  • 1. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М: Мир, 1977.
  • 2. Мандельштам Л. И. Лекции по оптике, теории относительности и квантовой механике. М: Наука, 1972. – 437 с.
  • 3. Рашевский П. К. Риманова геометрия и тензорный анализ. М.: Наука, 1967, - 664 - с.
  • 4. Менде Ф. Ф. К вопросу об уточнении уравнений электромагнитной индукции. - Харьков, депонирована в ВИНИТИ, №774-В88 Деп., 1988.-32с.
  • 5. Менде Ф. Ф. Существуют ли ошибки в современной физике. Харьков, Константа, 2003.- 72 с.
  • 6. Менде Ф. Ф. Непротиворечивая электродинамика. Харьков, НТМТ, 2008, – 153 с. ISBN 978-966-8603-23-5.
  • 7. Менде Ф. Ф. Великие заблуждения и ошибки физиков XIX-XX столетий. Революция в современной физике.. Харьков, НТМТ, 2010, – 176 с. ISBN 978-617-578-010-7.
Личные инструменты